Transactivation response (TAR) DNA-binding protein of Mr 43 kDa (TDP-43) is a major component of the tau-negative and ubiquitin-positive inclusions that characterize amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration which is now referred to as FTLD-TDP. Concurrent TDP-43 pathology has been reported in a variety of other neurodegenerative disorders such as Alzheimer's disease, forming a group of TDP-43 proteinopathy. Accumulated TDP-43 is characterized by phosphorylation and fragmentation. There is a close relationship between the pathological subtypes of FTLD-TDP and the immunoblot pattern of the C-terminal fragments of phosphorylated TDP-43. These results suggest that proteolytic processing of accumulated TDP-43 may play an important role for the pathological process. In cultured cells, transfected C-terminal fragments of TDP-43 are more prone to form aggregates than full-length TDP-43. Transfecting the C-terminal fragment of TDP-43 harboring pathogenic mutations of TDP-43 gene identified in familial and sporadic ALS cases into cells enhanced the aggregate formation. Furthermore, we found that methylene blue and dimebon inhibit aggregation of TDP-43 in these cellular models. Understanding the mechanism of phosphorylation and truncation of TDP-43 and aggregate formation may be crucial for clarifying the pathogenesis of TDP-43 proteinopathy and for developing useful therapeutics.
Mutations in the fused in sarcoma (FUS) gene are linked to a form of familial amyotrophic lateral sclerosis (ALS), ALS6. The FUS protein is a major component of the ubiquitin-positive neuronal cytoplasmic inclusions in both ALS6 and some rare forms of frontotemporal lobar degeneration (FTLD). The latter are now collectively referred to as FTLD-FUS. In the present study, we investigated the localization of FUS in human and mouse brains. FUS was detected by western blot as an approximately 72 kDa protein in both human and mouse brains. Immunohistochemistry using lightly fixed tissue sections of human and mouse brains revealed FUS-positive granular staining in the neuropil, in addition to nuclear staining. Such granules are abundant in the gray matter of the brainstem and spinal cord. They are not frequent in the telencephalon. At the light microscopic level, FUS-positive granules are often co-localized with synaptophysin and present in association with microtubule-associated protein 2-positive dendrites. In the synaptosomal fraction of mouse brain, FUS is detected mainly in the post-synaptic density fraction. Thus, while FUS is primarily a nuclear protein, it may also play a role in dendrites. In the brains of patients with FTLD with TDP-43 deposition (FTLD-TDP), the number of FUS-positive granules in the cortex is increased compared with control cases. The increase in Alzheimer's disease (AD) is less remarkable but still significant. The dendritic localization of FUS and its increase in FTLD-TDP and AD may have some implication for the pathophysiology of neurodegenerative diseases.
Basophilic inclusions (BIs) are pathological features of a subset of frontotemporal lobar degeneration disorders, including sporadic amyotrophic lateral sclerosis (ALS) and familial ALS (FALS). Mutations in the fused in sarcoma/translocated in liposarcoma (FUS/TLS) gene have recently been identified as a cause of FALS. The FUS/TLS-immunoreactive inclusions are consistently found in cases of frontotemporal lobar degeneration with BIs; however, the association between ALS cases with BIs and FUS/TLS accumulation is not well understood. We used immunohistochemistry to analyze 3 autopsy cases of FALS with the FUS/TLS mutation and with BIs using anti-FUS/TLS antibodies. The disease durations were 1, 3, and 9 years. As the disease duration becomes longer, there were broader distributions of neuronal and glial FUS/TLS-immunoreactive inclusions. As early as 1 year after the onset, BIs, neuronal cytoplasmic inclusions and glial cytoplasmic inclusions were found in the substantia nigra in addition to the anterior horn of the spinal cord. Glial cytoplasmic inclusions are found earlier and in a wider distribution than neuronal cytoplasmic inclusions. The distribution of FUS/TLS-immunoreactive inclusions in FUS/TLS-mutated FALS with BIs was broader than that of BIs alone, suggesting that the pathogenetic mechanism may have originated from the FUS/TLS proteinopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.