Chili peppers are used worldwide in foods for their pungent flavor, aroma, and to prolong food spoilage. With capsaicin contents ranging from zero to millions of Scoville heat units, the different varieties offer a wide range of options for people all over the world. In addition to their use in cuisines, chili peppers have been explored for their antimicrobial and antifungal properties. Consequently, research is underway to determine the potential for the application of chili pepper extracts in the food industry in place of artificial preservatives. As new antibiotic-resistant food borne pathogens emerge, the discovery of natural antimicrobials in chili peppers will be invaluable to food scientists. This review goes over some relevant research that has already been done in this area. In addition it lays the ground for the new research that is emerging testing new varieties of chili peppers for nutrient content, flavor profiles, and for antimicrobial activities against numerous human pathogens.
In this study, the capsaicin content of chile pepper extracts from 29 unexplored varieties of Capsicum (twenty five varieties of Capsicum chinense and five of Capsicum annuum) was quantified and correlated with the antimicrobial potential against bacterial and fungal pathogens. The capsaicin content and bactericidal activity against numerous human pathogens (Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, Candida albicans) was compared to identify the most effective chile pepper varieties in the treatment of bacterial and fungal pathogens. The capsaicin content of the tested varieties varied from 29 to 42,633 ppm (139-682,135 SHU). On average, the fruits of C. chinense cultivars contained much higher concentrations of capsaicin than C. annuum cultivars. The undiluted chile peppers extracts with capsaicin concentrations greater than 25,000 SHU demonstrated bactericidal and antifungal effects. Overall, it was determined that L. monocytogenes and S. aureus were more susceptible to the antimicrobial effects of capsaicin than Salmonella and E. coli O157:H7, while C. albicans was markedly more susceptible than all bacterial species examined. The extract of the sixth most pungent cultivar, C. chinense Bhut Jolokia Red, showed the greatest antimicrobial potency of all screened peppers. The antimicrobial activity of pepper extracts was not directly correlated with increasing capsaicin concentrations, indicating that various Capsicum cultivars may possess distinct capsaicin derivatives. This is the first study which showed the relationship between capsaicin contents in different Capsicum varieties and their antimicrobial potential, and opens avenues in the study of capsaicin derivatives and their role in health and medicines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.