This review attempts to synthesize the available literature on tropical dry forests and their dynamics in the context of climate change and thereby identifies possible gaps and priority areas for further research and management endeavors. Tropical dry forests (TDFs) occur in dryland environments, which are characterized by prolonged periods of dry months. They experience distinct seasonality and high inter-annual variability in climatic variables, particularly rainfall. Despite the enormous ecological and livelihood importance of TDFs, these forests are highly threatened by global changes. So far, they have received far less attention from research and development interventions as compared to the humid tropical forests. Their significance is still overlooked in many countries' national policies. Current modeling frameworks show that drought, precipitation, and temperature are highlighted as strong drivers of tree growth and/or mortality in these forests. Well-valued and sustainably managed TDFs have the potential to contribute to climate change adaptation and mitigation, buffer against erosion and desertification, and contribute to economic development, food security, and poverty alleviation. TDFs suffer notable disregard from research and development strategies. Thus, greater awareness and appropriate policies and investments are needed at various levels to counteract the increasing vulnerability of people, forest ecosystems, and species living in these fragile ecosystems. Further research is also needed to generate knowledge on the status and significances of TDFs and their responses in the face of the changing climate so as to bring their sustainable management to the attention of policymakers and managers.
Background: Climate-induced challenge remains a growing concern in the dry tropics, threatening carbon sink potential of tropical dry forests. Hence, understanding their responses to the changing climate is of high priority to facilitate sustainable management of the remnant dry forests. In this study, we examined the long-term climategrowth relations of main tree species in the remnant dry Afromontane forests in northern Ethiopia. The aim of this study was to assess the dendrochronological potential of selected dry Afromontane tree species and to study the influence of climatic variables (temperature and rainfall) on radial growth. It was hypothesized that there are potential tree species with discernible annual growth rings owing to the uni-modality of rainfall in the region. Ring width measurements were based on increment core samples and stem discs collected from a total of 106 trees belonging to three tree species (Juniperus procera, Olea europaea subsp. cuspidate and Podocarpus falcatus). The collected samples were prepared, crossdated, and analyzed using standard dendrochronological methods. The formation of annual growth rings of the study species was verified based on successful crossdatability and by correlating tree-ring widths with rainfall. Results: The results showed that all the sampled tree species form distinct growth boundaries though differences in the distinctiveness were observed among the species. Positive and significant correlations were found between the tree-ring widths and rainfall, implying that rainfall plays a vital role in determining tree growth in the region. The study confirmed the formation of annual growth rings through successful crossdating, thus highlighted the potential applicability of dendroclimatic studies in the region. Conclusions: Overall, the results proved the strong linkage between tree-ring chronologies and climate variability in the study region, which further strengthens the potential of dendrochronological studies developing in Ethiopia, and also has great implications for further paleo-climatic reconstructions and in the restoration of degraded lands. Further knowledge on the growth characteristics of tree species from the region is required to improve the network of tree-ring data and quality of the chronology so as to successfully reconstruct historic environmental changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.