A label-free biosensor based on silicon-on-insulator (SOI) photonic bandgap (PBG) structures is performed for specific protein detection. First, the SOI sensing surface is functionalized using triethoxyvinylsilane (TEVS) organosilane. Then, a UV light photocatalyzed immobilization of polyclonal half anti-bovine serum albumin (haBSA) antibodies is performed. Finally, a direct detection of target BSA antigen is carried out. Both the immobilization and the detection steps are monitored by making a continuous tracking of the PBG edge shift. In order to confirm the recognition of the antigen by the immobilized antibody, a fluorophore-labelled secondary antibody was flowed at the end of the experiment in order to perform a confirmation fluorescence test after the photonic detection.
A photonic bandgap (PBG) biosensor has been developed for the label-free detection of proteins. As the sensing in this type of structures is governed by the interaction between the evanescent field going into the cladding and the target analytes, scanning near-field optical microscopy has been used to characterize the profile of that evanescent field. The study confirms the strong exponential decrease of the signal as it goes into the cladding. This means that biorecognition events must occur as close to the PBG structure surface as possible in order to obtain the maximum sensing response. Within this context, the PBG biosensor has been biofunctionalized with half-antibodies specific to bovine serum albumin (BSA) using a UV-induced immobilization procedure. The use of half-antibodies allows one to reduce the thickness of the biorecognition volume down to ca. 2.5 nm, thus leading to a higher interaction with the evanescent field, as well as a proper orientation of their binding sites towards the target sample. Then, the biofunctionalized PBG biosensor has been used to perform a direct and real-time detection of the target BSA antigen.
Different hydrogels are reported in the literature to create generic platforms for protein microarray applications. Here, a novel strategy was developed to obtain high performance microarrays. It uses a dextran hydrogel to covalently immobilize oligonucleotides and proteins. This method employs aqueous solutions of dextran methacrylate (Dx-MA), which is a biocompatible photopolymerizable monomer. The approach promotes the covalent attachment of the capture probes inside the hydrogel by a thiol-acrylate coupling reaction by light while the dextran polymer is formed. The hydrogel microarrays were prepared on different surfaces, such as Blu-ray disk, polycarbonate or alkene functionalized glass slides, and showed high probe loading capability and good biorecognition yields. This methodology presents certain advantages, like low cost, short analysis times, low limit of detection, and multiplex capability, among others. The confocal fluorescence microscopy analysis demonstrates that the receptor immobilization and the biorecognition event take place inside the hydrogel and not merely on the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.