Accurate quantification of amyloid beta (Aβ) plaques is an important indicator for Alzheimer’s disease diagnosis and treatment. For this purpose, new highly sensitive Aβ tracers were designed by regulating the position and number of nitrogen atoms. A series of derivatives of florbetapir (AV45) containing different numbers and positions of N atoms were synthesized and evaluated for in vitro affinity and in vivo biodistribution. Preliminary study results showed that [18F]BIBD-124 and [18F]BIBD-127 had better clearance rates and less in vivo defluorination than AV45 in ICR (ICR = Institute of Cancer Research) mice. Autoradiography and molecular docking indicated that the binding sites of [18F]BIBD-124/127 were similar to that of [18F]AV45. Micro-positron emission tomography-computed tomography imaging further demonstrated that [18F]BIBD-124 could monitor Aβ plaques similar to [18F]AV45. Besides, the imaging contrast of [18F]BIBD-124 is better than that of [18F]AV45. Mass spectrometric metabolic analysis showed that BIBD-124 was less demethylated than AV45 without subsequent acetylation, which might explain its less non-specific uptake and higher imaging contrast. Gauss calculations further confirmed that the introduction of N5 in [18F]BIBD-124 decreased demethylation. Considering imaging contrast and in vivo defluorination, [18F]BIBD-124 is expected to be a promising radiotracer of Aβ plaques for further clinical trials.
11 C]ER176 has adequate sensitivity to image the human brain translocator protein (TSPO) in all three genotypes by positron emission tomography (PET). However, its clinical application is limited by the short half-life of 11 C (20.38 min). To overcome the deficiency of [ 11 C]ER176 and keep the pharmacophore features of ER176 to the maximum extent, we designed four fluorine-labeled ER176 derivatives using the deuterium method. In vitro competition binding confirmed that the designed compounds had high affinity for TSPO. Biodistribution experiments showed that tissues with high expression of TSPO had high uptake of these compounds, as well as that the compound showed high brain penetration and mild defluorination in vivo. Therefore, [ 18 F]BIBD-239 with simple synthesis conditions was selected for further biological evaluation. Theoretical simulations showed that BIBD-239 and ER176 have similar binding modes and sites to Ala147-TSPO and Thr147-TSPO, which indicated that the tracers may have consistent sensitivity to the three affinity genotypes. In vitro autoradiography and in vivo PET studies of the ischemic rat brain showed dramatically higher uptake of [ 18 F]BIBD-239 on the lesion site compared to the contralateral side with good brain kinetics. Additionally, [ 18 F]BIBD-239 provided clear tumor PET images in a GL261 glioma model. Importantly, PET imaging and liquid chromatography−high-resolution mass spectrometry (LC-HRMS) results showed that in vivo defluorination and other metabolites of [ 18 F]BIBD-239 did not interfere with brain imaging. Conclusively, [ 18 F]BIBD-239, similar to ER176 with low polymorphism sensitivity, has simple labeling conditions, high labeling yield, high affinity, and high specificity for TSPO, and it is planned for further evaluation in higher species.
The abnormal expression of aromatase is associated with the occurrence and development of a variety of neurological diseases and tumors. A series of 18F-labeled and 68Ga-labeled potential aromatase-binding candidate compounds were designed and synthesized based on the structures of aromatase inhibitors. Competitive inhibition experiments in vitro and molecular docking showed that BIBD-069 and BIBD-071 have high affinity for aromatase. The radiolabeling conditions of [18F]BIBD-069 and [18F]BIBD-071 were simple, and the yields were high. Biodistribution and in vivo inhibition experiments confirmed that [18F]BIBD-069 and [18F]BIBD-071 specifically bind to aromatase. [18F]BIBD-069 and [18F]BIBD-071 selectively imaged the amygdala and nucleus of the stria terminalis, which is similar to the imaging result of [11C]vorozole. Radiometabolites of [18F]BIBD-069 and [18F]BIBD-071 did not bind to aromatase and interfered with brain imaging. MicroPET-CT imaging further confirmed that [18F]BIBD-069 and [18F]BIBD-071 can specifically bind to aromatase and were not defluorinated in vivo. Given that [18F]BIBD-069 and [18F]BIBD-071 exhibit excellent aromatase binding affinities, mild radiolabeling conditions, and good pharmacokinetics, they can be important tools for the diagnosis and treatment of aromatase-related diseases.
Dysfunction or decreased expression of synaptic vesicle glycoprotein 2A (SV2A) is closely related to the progression of neurodegenerative diseases and psychiatric disorders. The development of positron emission tomography (PET) tracers targeting SV2A can provide a strong imaging basis for the diagnosis and treatment of these diseases. Herein we report the synthesis of the novel radiotracer [ 18 F]BIBD-181 and its preclinical evaluation. The absolute configuration of BIBD-181 was confirmed by the single-crystal structure of its precursor. The in vitro binding assay of BIBD-181 showed high SV2A binding affinity. Compared with previously reported tracers, [ 18 F]BIBD-181 has mild labeling conditions, simple operation, and high yield.The in vivo metabolism of [ 18 F]BIBD-181 is similar to that of UCB derivatives, and the metabolites do not interfere with brain PET imaging. Biodistribution and PET studies showed that [ 18 F]BIBD-181 has high brain uptake and good pharmacokinetics. Autoradiography and PET inhibition studies indicated that [ 18 F]BIBD-181 specifically binds SV2A. Because [ 18 F]BIBD-181 exhibits excellent properties, it may be a reliable probe of quantities for SV2A-related disease diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.