The Low-Efficiency Adaptive Clustering Hierarchical (LEACH) protocol, a hierarchical routing protocol, has the advantage of simple implementation and can effectively balance network loads. However, to date there has been a lack of consideration for its use in heterogeneous energy network environments. To solve this problem, the Energy-Coverage Ratio Clustering Protocol (E-CRCP) is proposed, which is based on reducing the energy consumption of the system and utilizing the regional coverage ratio. First, the energy model is designed. The optimal number of clusters is determined based on the principle of "minimum energy consumption", and the cluster head selection is based on the principle of "regional coverage maximization". In order to balance the network load as much as possible, in the next iteration of cluster head selection, the cluster head with the lowest residual energy and the highest energy consumption is replaced to prolong the network's life. Our simulated results demonstrate that the proposed method has some advantages in terms of longer network life, load balancing, and overall energy consumption in the environment of a heterogeneous energy wireless sensor network.
Although the Device-to-Device (D2D) technology in cellular networks can improve the performance of cellular systems, it creates a large amount of interference in traditional communications. In this paper, the problem of resource allocation and control in a single-cell scene is studied. First, the concept of a restricted D2D communication area and a restricted D2D user-reusage area is put forward to reduce the complexity and interference intensity of resource allocation. Second, under the premise of satisfying the QoS (Quality of Service) demands of every system user, the resource allocation algorithm is improved, the optimal allocation of resources is carried out, and the algorithm’s processes are given in detail. Our simulated experiments show that the proposed method greatly improves the spectrum efficiency and the system fairness.
Communication in VANETs is vulnerable to various types of security attacks since it is constructed based on an open wireless connection. Therefore, a lightweight authentication (LIAU) scheme for vehicle-to-vehicle communication is proposed in this paper. The LIAU scheme requires hash operations and uses cryptographic concepts to transfer messages between vehicles, in order to maintain the required security. Moreover, we made the LIAU scheme lightweight by introducing a small number of variable parameters in order to reduce the storage space. Performance analysis shows that the LIAU scheme is able to resist various types of security attacks and it performs well in terms of communication cost and operation time.
Vehicular ad hoc networks (VANETs) have attracted significant attention in academia insofar as they can provide reliable and secure communication between vehicles. It is thus essential to ensure security and preserve privacy. In this paper, we propose mix-context-based pseudonym changing privacy-preserving authentication (MPCPA). MPCPA introduces privacy protection through a mutual authentication mechanism to prevent attack-vehicles from sneaking into a VANET system. Moreover, it preserves the integrity of transmitted messages with an anonymous authentication mechanism. In addition, MPCPA adopts a mix-context-based pseudonym changing strategy to prevent vehicle tracking. A performance analysis demonstrates that MPCPA incurs low computational costs and offers a privacy-preserving scheme that is more secure than existing authentication schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.