Colorectal cancer stem cells (CSCs), characterized by self-renewal ability and high expression of proliferative genes, contribute to the chemoresistance of colorectal cancer (CRC). We aimed to identify the molecular mechanisms underlying CRC chemoresistance through comprehensive bioinformatics screenings and experimental confirmation of gene functions. We found that high expression of FGF1 intracellular binding protein (FIBP) was correlated with chemoresistance and poor prognosis in CRC patients. Therefore, the chemoresistant CRC cell line HCT116-CSC with high expression of the stem cell markers CD44 and CD133 was established for further phenotypic tests. FIBP knockdown inhibited proliferation, enhanced chemotherapy effects, and attenuated the stemness markers of CRC cells in vivo and in vitro. Through RNA-seq and gene set enrichment analysis, we identified cyclin D1 as a key downstream target in FIBP-regulated cell cycle progression and proliferation. Moreover, FIBP bound to GSK3β, inhibited its phosphorylation at Tyr216, and activated β-catenin/TCF/cyclin D1 signaling in HCT116-CSCs. Additional GSK3β knockdown reversed the FIBP silencing-induced inhibition of proliferation and decreased stemness marker expression in HCT116-CSCs. Furthermore, DNA methylation profiling suggested that FIBP regulated the stemness of CRC cells via methylation activity that was dependent on GSK3β but independent of β-catenin signaling. Our data illuminate the potential of FIBP as a novel therapeutic target for treating chemoresistant CRC through inhibition of GSK3β-related signaling.
Background and Purpose
Liquorice is the root of Glycyrrhiza glabra, which is a popular food in Europe and China that has previously shown benefits for skeletal fatigue and nutrient metabolism. However, the mechanism and active ingredients remain largely unclear. The aim of this study was to investigate the active ingredients of liquorice for muscle wasting and elucidate the underlying mechanisms.
Experimental Approach
RNA‐Seq and bioinformatics analysis were applied to predict the main target of liquorice. A machine learning model and a docking tool were used to predict active ingredients. Isotope labelling experiments, immunostaining, Western blots, qRT‐PCR, ChIP‐PCR and luciferase reporters were utilized to test the pharmacological effects in vitro and in vivo. The reverse effects were verified through recombination‐based overexpression.
Key Results
The liposoluble constituents of liquorice improved muscle wasting by inhibiting protein catabolism and fibre atrophy. We further identified FoxO1 as the target of liposoluble constituents of liquorice. In addition, hispaglabridin B (HB) was predicted as an inhibitor of FoxO1. Further studies determined that HB improved muscle wasting by inhibiting catabolism in vivo and in vitro. HB also markedly suppressed the transcriptional activity of FoxO1, with decreased expression of the muscle‐specific E3 ubiquitin ligases MuRF1 and Atrogin‐1.
Conclusions and Implications
HB can serve as a novel natural food extract for preventing muscle wasting in chronic kidney disease and possibly other catabolic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.