Background Studies have reported the use of photoplethysmography signals to detect atrial fibrillation; however, the use of photoplethysmography signals in classifying multiclass arrhythmias has rarely been reported. Our study investigated the feasibility of using photoplethysmography signals and a deep convolutional neural network to classify multiclass arrhythmia types. Methods and Results ECG and photoplethysmography signals were collected simultaneously from a group of patients who underwent radiofrequency ablation for arrhythmias. A deep convolutional neural network was developed to classify multiple rhythms based on 10‐second photoplethysmography waveforms. Classification performance was evaluated by calculating the area under the microaverage receiver operating characteristic curve, overall accuracy, sensitivity, specificity, and positive and negative predictive values against annotations on the rhythm of arrhythmias provided by 2 cardiologists consulting the ECG results. A total of 228 patients were included; 118 217 pairs of 10‐second photoplethysmography and ECG waveforms were used. When validated against an independent test data set (23 384 photoplethysmography waveforms from 45 patients), the DCNN achieved an overall accuracy of 85.0% for 6 rhythm types (sinus rhythm, premature ventricular contraction, premature atrial contraction, ventricular tachycardia, supraventricular tachycardia, and atrial fibrillation); the microaverage area under the microaverage receiver operating characteristic curve was 0.978; the average sensitivity, specificity, and positive and negative predictive values were 75.8%, 96.9%, 75.2%, and 97.0%, respectively. Conclusions This study demonstrated the feasibility of classifying multiclass arrhythmias from photoplethysmography signals using deep learning techniques. The approach is attractive for population‐based screening and may hold promise for the long‐term surveillance and management of arrhythmia. Registration URL: www.chictr.org.cn . Identifier: ChiCTR2000031170.
Objective: Continuous blood pressure (BP) provides valuable information for the disease management of patients with arrhythmias. The traditional intra-arterial method is too invasive for routine healthcare settings, whereas cuff-based devices are inferior in reliability and comfortable for long-term BP monitoring during arrhythmias. The study aimed to investigate an indirect method for continuous and cuff-less BP estimation based on electrocardiogram (ECG) and photoplethysmogram (PPG) signals during arrhythmias and to test its reliability for the determination of BP using invasive BP (IBP) as reference. Methods: Thirty-five clinically stable patients (15 with ventricular arrhythmias and 20 with supraventricular arrhythmias) who had undergone radiofrequency ablation were enrolled in this study. Their ECG, PPG, and femoral arterial IBP signals were simultaneously recorded with a multi-parameter monitoring system. Fifteen features that have the potential ability in indicating beat-to-beat BP changes during arrhythmias were extracted from the ECG and PPG signals. Four machine learning algorithms, decision tree regression (DTR), support vector machine regression (SVR), adaptive boosting regression (AdaboostR), and random forest regression (RFR), were then implemented to develop the BP models. Results: The results showed that the mean value ± standard deviation of root mean square error for the estimated systolic BP (SBP), diastolic BP (DBP) with the RFR model against the reference in all patients were 5.87 ± 3.13 and 3.52 ± 1.38 mmHg, respectively, which achieved the best performance among all the models. Furthermore, the mean error ± standard deviation of error between the estimated SBP and DBP with the RFR model against the reference in all patients were −0.04 ± 6.11 and 0.11 ± 3.62 mmHg, respectively, which complied with the Association for the
Cardiovascular disease (CVD) is a widespread disease and the leading cause of death worldwide. Home care is essential for patients with CVD, and it involves the daily monitoring of important CVD-related vital signs using methods including electrocardiography (ECG), heart rate monitoring, pulse oximetry (SpO2), and continuous blood pressure measurement. However, a wearable device that can monitor these parameters simultaneously remains unavailable; herein, we propose a lightweight, highly integrated sensor that can do so. In this sensor, an analog front end (AFE) integrated chip (IC) is implemented in the sensor to detect one-lead ECG and two-wavelength photoplethysmography (PPG) signals. The highly integrated IC minimizes both the size and power requirement of the sensor. Moreover, its comprehensive functions include adjustable gain, current compensation, lead off, and fast recovery-all of which are crucial for wearable applications in large populations. Accordingly, the sensor can apply the adaptive adjust method to automatically adjust the IC parameters to suit a range of applications and users. In addition, the heart rate is calculated from the R-R interval from the ECG signals, whereas the SpO2 is calibrated with a univariate quadratic equation with less than 1% mean error. Our sensor can also calculate the systolic blood pressure (SBP) and diastolic blood pressure (DBP) by using a support vector machine based calibration-less model with the features of infrared PPG and ECG signals. The model is trained on our pre-collected wearable dataset and has a mean error ± standard deviation of −2.10 ± 7.07 mmHg for SBP and 0.04 ± 7.34 mmHg for DBP in 16 volunteers. In conclusion, this paper reports on a multimodal, vital sign monitoring sensor-with small size, low power, and dynamic compatibility-suitable for patients with CVD under home care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.