Risk management is a key factor for smart city running. There are many risk events in a strict process like transportation management of a smart city or a medical surgery in a smart hospital, and every step may lead to one kind of risk or more. In view of the fact that the occurrence of the flow risks follows the sequence formed by each process step, this paper presents a Bayesian network under strict chain (BN_SC) to model this situation. In this model, the probabilistic reasoning formula is given according to the sequence of process steps, and the probabilities given by the model can do risk factor analysis to support the system to find an effective way to improve the process like machine manufacturing or a medical surgery. Finally, an example is analyzed based on the information given by doctors according to the situation of LC in their hospital located in Sichuan Province of China, which shows the effectiveness and rationality of the proposed BN_SC model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.