In the milling process, cutting forces contain key information about the machining process status in terms of workpiece quality and tool condition. On-line cutting force measurement is key for machining condition monitoring and machined surface quality assurance. This paper presents a novel instrumented working table with integrated polyvinylidene fluoride (PVDF) thin-film sensors, thus enabling the dynamic milling force measurement with compact structures. To achieve this, PVDF thin-film sensors are integrated into the working table to sense forces in different directions and the dedicated cutting force decoupling model is derived. A prototype instrumented working table is developed and validated. The validation demonstrates that profiles of the forces measured from the developed instrumented working table prototype and the dynamometer match well. Furthermore, the milling experiment results convey that the instrumented working table prototype could also identify the tool runout due to tool manufacturing or assembly errors, and the force signal spectrum analysis indicates that the developed working table can capture the tool passing frequency correctly, therefore, is suitable for the milling force measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.