Objective. In our previous study, we found that some miRNAs were deregulated in hepatocellular carcinoma (HCC), including miR-183. However, the expression of miR-183 in the progression of benign liver diseases to HCC and its correlation with clinicopathologic factors remain undefined. Methods. MiR-183 expression was measured in normal controls (NC) (n = 21), chronic viral hepatitis B or C (CH) tissues (n = 10), liver cirrhosis (LC) tissues (n = 18), HCC tissues (n = 92), and adjacent nontumor tissues (NT) (n = 92) by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Results. The expression levels of miR-183 were significantly higher in HCC than in NT, LC, CH, and NL (P = 0.001, P < 0.001, P = 0.011, P < 0.001, resp.). The upregulated miR-183 in HCC was correlated with TNM stage (P = 0.042) and cirrhosis (P = 0.025). The Kaplan-Meier survival analysis showed that miR-183 expression was not associated with the survival of HCC patients. However, miR-183 yielded an area under the curve (AUC) of 0.808 with 59.8% sensitivity and 91.8% specificity in discriminating HCC from benign liver diseases (CH and LC) or NC. Conclusions. The upregulated miR-183 may associate with onset and progression of HCC, but not with the patient survival. A further research is needed to determine the potential of miR-183 as biomarker for HCC.
Objectives-Skeletal muscle dysfunction is one of the most common comorbidities in chronic obstructive pulmonary disease (COPD). The occurrence of respiratory failure in COPD is common and leads to the patient's death. The diaphragm is the most important muscle in the respiratory system and plays a key role in the onset of respiratory failure. This study explores the feasibility of ultrasound shear wave elastography (SWE) to measure diaphragmatic stiffness and evaluates its changes in COPD patients.Methods-In total, 77 participants (43 patients with stable COPD and 34 healthy controls) were enrolled. All subjects underwent complete diaphragmatic ultrasound SWE measurements and pulmonary function tests. The diaphragmatic stiffness was indicated via diaphragmatic shear wave velocity (SWV) at functional residual capacity (FRC). A trained operator performed the ultrasound SWE examinations of the first 15 healthy controls thrice to assess the reliability of diaphragmatic SWE.Results-A good to excellent reliability was found in diaphragmatic SWV at FRC (ICC = 0.93, 95%CI 0.82-0.98). As compared to the control group, the diaphragmatic SWV at FRC was considerably high in the COPD group (median 2.5 m/s versus 2.1 m/s, P = .008). Diaphragmatic SWV at FRC was linked to forced expiratory volume in one second (r = −0.30, P = .009), forced vital capacity (r = −0.33, P = .003), modified Medical Research Council score (r = 0.30, P = .001), and COPD assessment test score (r = 0.48, P < .001).Conclusions-Ultrasound SWE may be employed as an effective tool for quantitative evaluation of diaphragm stiffness and can help in personalized management of COPD, such as treatment guidance and follow-up monitoring.
Objectives: Early recanalization of large vessels in thromboembolism, such as myocardial infarction and ischemic stroke, is associated with improved clinical outcomes. Nitric oxide (NO), a biological gas signaling molecule, has been proven to protect against ischemia–reperfusion injury (IRI). However, the underlying mechanisms remain to be explored. This study investigated whether NO could mitigate IRI and the role of NO during acoustic cavitation.Methods:In vivo, thrombi in the iliac artery of rats were induced by 5% FeCl3. NO-loaded microbubbles (NO-MBs) and ultrasound (US) were used to treat thrombi. B-mode and Doppler US and histological analyses were utilized to evaluate the thrombolysis effect in rats with thrombi. Immunohistochemistry, immunofluorescence, and western blotting were conducted to investigate the underlying mechanisms of NO during acoustic cavitation. In vitro, hypoxia was used to stimulate cells, and NO-MBs were employed to alleviate oxidative stress and apoptosis.Results: We developed NO-MBs that significantly improve the circulation time of NO in vivo, are visible, and effectively release therapeutic gas under US. US-targeted microbubble destruction (UTMD) and NO-loaded UTMD (NO + UTMD) caused a significant decrease in the thrombus area and an increase in the recanalization rates and blood flow velocities compared to the control and US groups. We discovered that UTMD induced NO generation through activation of endothelial NO synthase (eNOS) in vivo. More importantly, we also observed significantly increased NO content and eNOS expression in the NO + UTMD group compared to the UTMD group. NO + UTMD can mitigate oxidative stress and apoptosis in the hind limb muscle without influencing blood pressure or liver and kidney functions. In vitro, NO-MBs alleviated oxidative stress and apoptosis in cells pretreated with hypoxia.Conclusion: Based on these data, UTMD affects the vascular endothelium by activating eNOS, and NO exerts a protective effect against IRI.
In this study, the utility of point-of-care lung ultrasound for the clinical classification of coronavirus disease (COVID-19) was prospectively assessed. Twenty-seven adult patients with COVID-19 underwent bedside lung ultrasonography (LUS) examinations three times within the first two weeks of admission to the isolation ward. We divided the 81 exams into three groups (i.e., moderate group, severe group, and critically ill group). Lung scores were calculated as the sum of points. A rank sum test and bivariate correlation analysis were carried out to determine the correlation between LUS on admission and the clinical classification of COVID-19. There were dramatic differences in LUS (p<0.001) among the three groups, and LUS scores (r=0.754) correlated positively with clinical severity (p<0.01). In addition, moderate, severe, and critically ill patients were more likely to have low (≤9), medium (9-15), and high scores (≥15), respectively. This study provides stratification criteria of LUS scores to assist in quantitatively evaluating COVID-19 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.