Milk protein concentrate (MPC) is a high-protein dairy product. It is underutilized due to its poor solubility compared with other milk protein products. This study aimed to investigate the effect of enzymatic hydrolysis on the physicochemical properties and solubility of MPC. Results showed that Alcalase hydrolysates possessed a higher degree of hydrolysis (DH) than Protamex and Flavourzyme hydrolysates. Similar results could be obtained using sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the hydrolysate of Alcalase was less than 10 kDa. Changes to the molecular weight thereby led to a modification in the fluorescence intensity, Fourier-transform infrared spectrometry, and ultraviolet absorption. The solubility of all hydrolysates was significantly increased (p < 0.05). Correlation analysis showed a positive correlation between solubility, DH, and bitterness; the correlation coefficients were 0.81 for DH and 0.61 for bitterness. Electronic tongue analysis showed that the bitterness of Alcalase hydrolysates was the highest, while the values for Protamex hydrolysates were the lowest.
Panax Notoginseng Saponins (PNS) may be beneficial to human health due to their bioactive function. The application of PNS in functional foods was limited due to the bitter taste and low oral bioavailability. PNS were encapsulated by polymerized whey protein (PWP) nanoparticles. The physicochemical, digestive, and sensory properties of the nanoparticles were investigated. Results showed that the nanoparticles had a particle size of 55 nm, the zeta potential of −28 mV, and high PNS encapsulation efficiency (92.94%) when the mass ratio of PNS to PWP was 1:30. Differential Scanning Calorimetry (DSC) results revealed that PNS were successfully encapsulated by PWP. The mainly intermolecular forces between PNS and PWP were hydrogen bonding and electrostatic attraction confirmed by Fourier Transform Infrared Spectroscopy (FTIR). Results of simulated gastrointestinal digestion indicated that the PNS-PWP (1:30) nanoparticles had smaller average particle size (36 nm) after treatment with gastric fluids and increased particle size (75 nm) after treatment with intestinal fluids. Transmission Electron Microscopy (TEM) micrographs reflected that the nanoparticles had irregular spherical structures. The encapsulated PNS exhibited significantly (p < 0.05) decreased bitterness compared to the non-encapsulated PNS confirmed by the electronic tongue. The results indicated that encapsulation of PNS with PWP could facilitate their application in functional foods.
In this study, the exopolysaccharide (EPS) from Lactiplantibacillus plantarum (HMX2) was isolated from Chinese Northeast Sauerkraut. Its effects on juvenile turbot were investigated by adding different concentrations of HMX2-EPS (C: 0 mg/kg, H1: 100 mg/kg, H2: 500 mg/kg) to the feed. Compared with the control group, HMX2-EPS significantly improved the growth performance of juvenile turbot. The activities of antioxidant enzymes, digestive enzymes, and immune-related enzymes were significantly increased. HMX2-EPS could also increase the secretion of inflammatory factors and enhance the immune response of turbot by regulating the IFN signal transduction pathway and exhibit stronger survival rates after the A. hydrophila challenge. Moreover, HMX2-EPS could improve the diversity of intestinal microbiota in juvenile fish, increase the abundance of potential probiotics, and reduce the abundance of pathogenic bacteria. The function of gut microbes in metabolism and the immune system could also be improved. All results showed better effects with high concentrations of HMX2-EPS. These results indicated that HMX2-EPS supplementation in the diet could promote growth, improve antioxidant activity, digestive capacity, and immunity capacity, and actively regulate the intestinal microbiota of juvenile turbot. In conclusion, this study might provide basic technical and scientific support for the application of L. plantarum in aquatic feed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.