De-identification, identifying information from data, such as protected health information (PHI) present in clinical data, is a critical step to enable data to be shared or published. The 2016 Centers of Excellence in Genomic Science (CEGS) Neuropsychiatric Genome-scale and RDOC Individualized Domains (N-GRID) clinical natural language processing (NLP) challenge contains a de-identification track in de-identifying electronic medical records (EMRs) (i.e., track 1). The challenge organizers provide 1000 annotated mental health records for this track, 600 out of which are used as a training set and 400 as a test set. We develop a hybrid system for the de-identification task on the training set. Firstly, four individual subsystems, that is, a subsystem based on bidirectional LSTM (long-short term memory, a variant of recurrent neural network), a subsystem-based on bidirectional LSTM with features, a subsystem based on conditional random field (CRF) and a rule-based subsystem, are used to identify PHI instances. Then, an ensemble learning-based classifiers is deployed to combine all PHI instances predicted by above three machine learning-based subsystems. Finally, the results of the ensemble learning-based classifier and the rule-based subsystem are merged together. Experiments conducted on the official test set show that our system achieves the highest micro F1-scores of 93.07%, 91.43% and 95.23% under the “token”, “strict” and “binary token” criteria respectively, ranking first in the 2016 CEGS N-GRID NLP challenge. In addition, on the dataset of 2014 i2b2 NLP challenge, our system achieves the highest micro F1-scores of 96.98%, 95.11% and 98.28% under the “token”, “strict” and “binary token” criteria respectively, outperforming other state-of-the-art systems. All these experiments prove the effectiveness of our proposed method.
BackgroundEntity recognition is one of the most primary steps for text analysis and has long attracted considerable attention from researchers. In the clinical domain, various types of entities, such as clinical entities and protected health information (PHI), widely exist in clinical texts. Recognizing these entities has become a hot topic in clinical natural language processing (NLP), and a large number of traditional machine learning methods, such as support vector machine and conditional random field, have been deployed to recognize entities from clinical texts in the past few years. In recent years, recurrent neural network (RNN), one of deep learning methods that has shown great potential on many problems including named entity recognition, also has been gradually used for entity recognition from clinical texts.MethodsIn this paper, we comprehensively investigate the performance of LSTM (long-short term memory), a representative variant of RNN, on clinical entity recognition and protected health information recognition. The LSTM model consists of three layers: input layer – generates representation of each word of a sentence; LSTM layer – outputs another word representation sequence that captures the context information of each word in this sentence; Inference layer – makes tagging decisions according to the output of LSTM layer, that is, outputting a label sequence.ResultsExperiments conducted on corpora of the 2010, 2012 and 2014 i2b2 NLP challenges show that LSTM achieves highest micro-average F1-scores of 85.81% on the 2010 i2b2 medical concept extraction, 92.29% on the 2012 i2b2 clinical event detection, and 94.37% on the 2014 i2b2 de-identification, which is considerably competitive with other state-of-the-art systems.ConclusionsLSTM that requires no hand-crafted feature has great potential on entity recognition from clinical texts. It outperforms traditional machine learning methods that suffer from fussy feature engineering. A possible future direction is how to integrate knowledge bases widely existing in the clinical domain into LSTM, which is a case of our future work. Moreover, how to use LSTM to recognize entities in specific formats is also another possible future direction.
De-identification, identifying and removing all protected health information (PHI) present in clinical data including electronic medical records (EMRs), is a critical step in making clinical data publicly available. The 2014 i2b2 (Center of Informatics for Integrating Biology and Bedside) clinical natural language processing (NLP) challenge sets up a track for de-identification (track 1). In this study, we propose a hybrid system based on both machine learning and rule approaches for the de-identification track. In our system, PHI instances are first identified by two (token-level and character-level) conditional random fields (CRFs) and a rule-based classifier, and then are merged by some rules. Experiments conducted on the i2b2 corpus show that our system submitted for the challenge achieves the highest micro F-scores of 94.64%, 91.24% and 91.63% under the “token”, “strict” and “relaxed” criteria respectively, which is among top-ranked systems of the 2014 i2b2 challenge. After integrating some refined localization dictionaries, our system is further improved with F-scores of 94.83%, 91.57% and 91.95% under the “token”, “strict” and “relaxed” criteria respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.