Tensor decomposition is a powerful computational tool for multiway data analysis. Many popular tensor decomposition approaches-such as the Tucker decomposition and CANDECOMP/PARAFAC (CP)-amount to multi-linear factorization. They are insufficient to model (i) complex interactions between data entities, (ii) various data types (e.g., missing data and binary data), and (iii) noisy observations and outliers. To address these issues, we propose tensor-variate latent nonparametric Bayesian models for multiway data analysis. We name these models InfTucker. These new models essentially conduct Tucker decomposition in an infinite feature space. Unlike classical tensor decomposition models, our new approaches handle both continuous and binary data in a probabilistic framework. Unlike previous Bayesian models on matrices and tensors, our models are based on latent Gaussian or t processes with nonlinear covariance functions. Moreover, on network data, our models reduce to nonparametric stochastic blockmodels and can be used to discover latent groups and predict missing interactions. To learn the models efficiently from data, we develop a variational inference technique and explore properties of the Kronecker product for computational efficiency. Compared with a classical variational implementation, this technique reduces both time and space complexities by several orders of magnitude. On real multiway and network data, our new models achieved significantly higher prediction accuracy than state-of-art tensor decomposition methods and blockmodels.
No abstract
A plethora of multi-view subspace clustering (MVSC) methods have been proposed over the past few years. Researchers manage to boost clustering accuracy from different points of view. However, many state-of-the-art MVSC algorithms, typically have a quadratic or even cubic complexity, are inefficient and inherently difficult to apply at large scales. In the era of big data, the computational issue becomes critical. To fill this gap, we propose a large-scale MVSC (LMVSC) algorithm with linear order complexity. Inspired by the idea of anchor graph, we first learn a smaller graph for each view. Then, a novel approach is designed to integrate those graphs so that we can implement spectral clustering on a smaller graph. Interestingly, it turns out that our model also applies to single-view scenario. Extensive experiments on various large-scale benchmark data sets validate the effectiveness and efficiency of our approach with respect to state-of-the-art clustering methods.
Recurrent Neural Networks (RNNs) are powerful sequence modeling tools. However, when dealing with high dimensional inputs, the training of RNNs becomes computational expensive due to the large number of model parameters. This hinders RNNs from solving many important computer vision tasks, such as Action Recognition in Videos and Image Captioning. To overcome this problem, we propose a compact and flexible structure, namely Block-Term tensor decomposition, which greatly reduces the parameters of RNNs and improves their training efficiency. Compared with alternative low-rank approximations, such as tensortrain RNN (TT-RNN), our method, Block-Term RNN (BT-RNN), is not only more concise (when using the same rank), but also able to attain a better approximation to the original RNNs with much fewer parameters. On three challenging tasks, including Action Recognition in Videos, Image Captioning and Image Generation, BT-RNN outperforms TT-RNN and the standard RNN in terms of both prediction accuracy and convergence rate. Specifically, BT-LSTM utilizes 17,388 times fewer parameters than the standard LSTM to achieve an accuracy improvement over 15.6% in the Action Recognition task on the UCF11 dataset.
Learning graphs from data automatically has shown encouraging performance on clustering and semisupervised learning tasks. However, real data are often corrupted, which may cause the learned graph to be inexact or unreliable. In this paper, we propose a novel robust graph learning scheme to learn reliable graphs from real-world noisy data by adaptively removing noise and errors in the raw data. We show that our proposed model can also be viewed as a robust version of manifold regularized robust PCA, where the quality of the graph plays a critical role. The proposed model is able to boost the performance of data clustering, semisupervised classification, and data recovery significantly, primarily due to two key factors: 1) enhanced low-rank recovery by exploiting the graph smoothness assumption, 2) improved graph construction by exploiting clean data recovered by robust PCA. Thus, it boosts the clustering, semi-supervised classification, and data recovery performance overall. Extensive experiments on image/document clustering, object recognition, image shadow removal, and video background subtraction reveal that our model outperforms the previous state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.