SQUAMOSA Promoter-Binding Protein-Like (SPL) genes encode plant-specific transcription factors that play important roles in plant phase transition, flower and fruit development, plant architecture, gibberellins signaling, sporogenesis, and response to copper and fungal toxins. In Arabidopsis, many SPL genes are post-transcriptionally regulated by the microRNA (miRNA) miR156, among which AtSPL9 in turn positively regulates the expression of the second miRNA miR172. This miR156-AtSPL9-miR172 regulatory pathway plays critical roles during juvenile to adult leaf development and the miR156-SPLs feedback interaction persists all through the plant development, which may be conserved in other plants. In the present paper, we provide a concise review on the most recent progress in the regulatory mechanisms associated with plant SPL transcription factors, especially in relation to miRNAs. The potential application of these discoveries in agriculture is briefly discussed.
Calcium-dependent protein kinases (CDPKs) are crucial sensors of calcium concentration changes in plant cells under diverse endogenous and environmental stimuli. We identified 20 CDPK genes from bread wheat and performed a comprehensive study on their structural, functional and evolutionary characteristics. Full-length cDNA sequences of 14 CDPKs were obtained using various approaches. Wheat CDPKs were found to be similar to their counterparts in rice in genomic structure, GC content, subcellular localization, and subgroup classification. Divergence time estimation of wheat CDPK gene pairs and wheat-rice orthologs suggested that most duplicated genes already existed in the common ancestor of wheat and rice. The number of CDPKs in diploid wheat genome was estimated to be at least 26, a number close to that in rice, Arabidopsis, and poplar. However, polymorphism among EST sequences uncovered transcripts of all three homoeologous alleles for 13 out of 20 CDPKs. Thus, the hexaploid wheat should have 2-3 fold more CDPK genes expressing in their cells than the diploid species. Wheat CDPK genes were found to respond to various biotic and abiotic stimuli, including cold, hydrogen peroxide (H(2)O(2)), salt, drought, powdery mildew (Blumeria graminis tritici, Bgt), as well as phytohormones abscisic acid (ABA) and gibberellic acid (GA). Each CDPK gene often responded to multiple treatments, suggesting that wheat CDPKs are converging points for multiple signal transduction pathways. The current work represents the first comprehensive study of CDPK genes in bread wheat and provides a foundation for further functional study of this important gene family in Triticeae.
Branching is an important trait of plant development regulated by environmental signals. Phytochromes in Arabidopsis mediate branching in response to the changes in the red light:far-red light ratio (R:FR), the mechanisms of which are still elusive. Here it is shown that overexpression of CONSTANS-LIKE 7 (COL7) results in an abundant branching phenotype which could be efficiently suppressed by shade or a simulated shade environment (low R:FR). Moreover, col7 mutants develop shorter hypocotyls and COL7 overexpression lines develop longer hypocotyls in comparison with the wild type in low R:FR, indicating that COL7 acts as an enhancer of the shade avoidance response. In shade or transient low R:FR, transcriptional and post-transcriptional expression levels of COL7 are up-regulated and positively associated with rapid mRNA accumulation of PHYTOCHROME INTERACTING FACTOR 3-LIKE 1 (PIL1), a marker gene of shade avoidance syndrome (SAS). Taken together, the results suggest a dual role for COL7 which promotes branching in high R:FR conditions but enhances SAS in low R:FR conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.