The spiral structure of the cyanobacterium Arthrospira (Spirulina) platensis (Nordst.) Gomont was previously found to be altered by solar ultraviolet radiation (UVR, 280-400 nm). However, how photosynthetic active radiation (PAR, 400-700 nm) and UVR interact in regulating this morphological change remains unknown. Here, we show that the spiral structure of A. platensis (D-0083) was compressed under PAR alone at 30 degrees C, but that at 20 degrees C, the spirals compressed only when exposed to PAR with added UVR, and that UVR alone (the PAR was filtered out) did not tighten the spiral structure, although its presence accelerated morphological regulation by PAR. Their helix pitch decreased linearly as the cells received increased PAR doses, and was reversible when they were transferred back to low PAR levels. SDS-PAGE analysis showed that a 52.0 kDa periplasmic protein was more abundant in tighter filaments, which may have been responsible for the spiral compression. This spiral change together with the increased abundance of the protein made the cells more resistant to high PAR as well as UVR, resulting in a higher photochemical yield.
During October to December 2003 we carried out experiments to assess the impact of high solar radiation levels (as normally occurring in a tropical region of Southern China) on the cyanobacteria Nostoc sphaeroides and Arthrospira (Spirulina) platensis. Two types of experiments were done: a) Short-term (i.e., 20 min) oxygen production of samples exposed to two radiation treatments (i.e., PAR+UVR-280-700 nm, and PAR only-400-700 nm, PAB and P treatments, respectively), and b) Long-term (i.e., 12 days) evaluation of photosynthetic quantum yield (Y) of samples exposed to three radiation treatments (i.e., PAB; PA (PAR+UV-A, 320-700 nm) and P treatments, respectively). N. sphaeroides was resistant to UVR, with no significant differences (P > 0.05) in oxygen production within 20 min of exposure, but with a slight inhibition of Y within hours. A fast recovery of Y was observed after one day even in samples exposed to full solar radiation. A. platensis, on the other hand, was very sensitive to solar radiation (mainly to UV-B), as determined by oxygen production and Y measurements. A. platensis had a circadian rhythm of photosynthetic inhibition, and during the first six days of exposure to solar radiation, it varied between 80 and 100% at local noon, but cells recovered significantly during afternoon hours. There was a significant decrease in photosynthetic inhibition after the first week of exposure with values less than 50% at local noon in samples receiving full solar radiation. Samples exposed to PA and P treatments recovered much faster (within 2-3 days), and there were no significant differences in Y between the three radiation treatments when irradiance was low (late afternoon to early morning). Long-term acclimation seems to be important in A. platensis to cope with high UVR levels however, it is not attained through the synthesis of UV-absorbing compounds but it seems to be mostly related to adaptive morphological changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.