Cells use molecular chaperones and proteases to implement the essential quality control mechanism of proteins. The DegP (HtrA) protein, essential for the survival of Escherichia coli cells at elevated temperatures with homologues found in almost all organisms uniquely has both functions. Here we report a mechanism for DegP to activate both functions via formation of large cage-like 12-and 24-mers after binding to substrate proteins. Cryo-electron microscopic and biochemical studies revealed that both oligomers are consistently assembled by blocks of DegP trimers, via pairwise PDZ1-PDZ2 interactions between neighboring trimers. Such interactions simultaneously eliminate the inhibitory effects of the PDZ2 domain. Additionally, both DegP oligomers were also observed in extracts of E. coli cells, strongly implicating their physiological importance.cryo-electron microscopy ͉ protein quality control ͉ HtrA ͉ PDZ domain ͉ oligomerization
Acid chaperones are essential factors in preserving the protein homeostasis for enteric pathogens to survive in the extremely acidic mammalian stomach (pH 1-3). The client proteins of these chaperones remain largely unknown, primarily because of the exceeding difficulty of determining protein-protein interactions under low-pH conditions. We developed a genetically encoded, highly efficient protein photocrosslinking probe, which enabled us to profile the in vivo substrates of a major acid-protection chaperone, HdeA, in Escherichia coli periplasm. Among the identified HdeA client proteins, the periplasmic chaperones DegP and SurA were initially found to be protected by HdeA at a low pH, but they subsequently facilitated the HdeA-mediated acid recovery of other client proteins. This unique, ATP-independent chaperone cooperation in the ATP-deprived E. coli periplasm may support the acid resistance of enteric bacteria. The crosslinker would be valuable in unveiling the physiological interaction partners of any given protein and thus their functions under normal and stress conditions.
The extremely acidic environment of the mammalian stomach, with a pH range usually between 1 and 3, represents a stressful challenge for enteric pathogenic bacteria such as Escherichia coli before they enter into the intestine. The hdeA gene of E. coli was found to be acid inducible and was revealed by genetic studies to be important for the acid survival of the strain. This study was performed in an attempt to characterize the mechanism of the activity of the HdeA protein. Our data provided in this report strongly suggest that HdeA employs a novel strategy to modulate its chaperone activity: it possesses an ordered conformation that is unable to bind denatured substrate proteins under normal physiological conditions (i.e. at neutral pH) and transforms into a globally disordered conformation that is able to bind substrate proteins under stress conditions (i.e. at a pH below 3). Furthermore, our data indicate that HdeA exposes hydrophobic surfaces that appear to be involved in the binding of denatured substrate proteins at extremely low pH values. In light of our observations, models are proposed to explain the action of HdeA in both a physiological and a molecular context.
Tuberculosis continues to be a major disease threatening millions of lives worldwide. Several antigens of Mycobacterium tuberculosis, identified by monoclonal antibodies, have been cloned and are being exploited in the development of improved vaccines and diagnostic reagents. We have expressed and purified the 16-kDa antigen, an immunodominant antigen with serodiagnostic value, which has been previously cloned and shown to share low sequence homology with the ␣-crystallinrelated small heat shock protein family. Sedimentation equilibrium analytical ultracentrifugation and dynamic light scattering demonstrate the formation of a specific oligomer, 149 ؎ 8 kDa, consisting of approximately nine monomers. In 4 M urea, a smaller oligomer of 47 ؎ 6 kDa (or trimer) is produced. Analysis by electron cryomicroscopy reveals a triangular shaped oligomeric structure arising from the presence of three subparticles or globules. Taken together, the data suggest an antigen complex structure of a trimer of trimers. This antigen, independent of ATP addition, effectively suppresses the thermal aggregation of citrate synthase at 40°C, indicating that it can function as a molecular chaperone in vitro. A complex between the antigen and heat-denatured citrate synthase can be detected and isolated using high performance liquid chromatography. We propose to rename the 16-kDa antigen Hsp16.3 to be consistent with other members of the small heat shock protein family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.