Growing evidences suggest that cancer stem cells exhibit many molecular characteristics and phenotypes similar to their ancestral progenitor cells. In the present study, human embryonic stem cells are induced to differentiate into hepatocytes along hepatic lineages to mimic liver development in vitro. A liver progenitor specific gene, RALY RNA binding protein like (RALYL), is identified. RALYL expression is associated with poor prognosis, poor differentiation, and metastasis in clinical HCC patients. Functional studies reveal that RALYL could promote HCC tumorigenicity, self-renewal, chemoresistance, and metastasis. Moreover, molecular mechanism studies show that RALYL could upregulate TGF-β2 mRNA stability by decreasing N6-methyladenosine (m6A) modification. TGF-β signaling and the subsequent PI3K/AKT and STAT3 pathways, upregulated by RALYL, contribute to the enhancement of HCC stemness. Collectively, RALYL is a liver progenitor specific gene and regulates HCC stemness by sustaining TGF-β2 mRNA stability. These findings may inspire precise therapeutic strategies for HCC.
Background Although a substantial increase in the survival of patients with other cancers has been observed in recent decades, pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest diseases. No effective screening approach exists. Methods Differential exosomal long noncoding RNAs (lncRNAs) isolated from the serum of patients with PDAC and healthy individuals were profiled to screen for potential markers in liquid biopsies. The functions of LINC00623 in PDAC cell proliferation, migration and invasion were confirmed through in vivo and in vitro assays. RNA pulldown, RNA immunoprecipitation (RIP) and coimmunoprecipitation (Co-IP) assays and rescue experiments were performed to explore the molecular mechanisms of the LINC00623/NAT10 signaling axis in PDAC progression. Results A novel lncRNA, LINC00623, was identified, and its diagnostic value was confirmed, as it could discriminate patients with PDAC from patients with benign pancreatic neoplasms and healthy individuals. Moreover, LINC00623 was shown to promote the tumorigenicity and migratory capacity of PDAC cells in vitro and in vivo. Mechanistically, LINC00623 bound to N-acetyltransferase 10 (NAT10) and blocked its ubiquitination-dependent degradation by recruiting the deubiquitinase USP39. As a key regulator of N4-acetylcytidine (ac4C) modification of mRNA, NAT10 was demonstrated to maintain the stability of oncogenic mRNAs and promote their translation efficiency through ac4C modification. Conclusions Our data revealed the role of LINC00623/NAT10 signaling axis in PDAC progression, showing that it is a potential biomarker and therapeutic target for PDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.