The zeolitic imidazolate framework-8 (ZIF-8) is a specifically promising drug carrier due to its excellent intrinsic properties. However, the high toxicity of ZIF-8 nanoparticles severely limits their further research and clinical application. In this work, the biocompatibility of ZIF-8 nanoparticles is greatly improved by coating ZrO 2 onto the surface. The survival rate of cells and mice in the ZIF-8@ZrO 2 nanocomposite group is significantly increased compared with the undecorated ZIF-8 nanoparticle group. Doxorubicin (DOX) as a chemotherapeutic drug is deposited during the ZIF-8 growth by a facile one-pot method. Ionic liquid (IL) is loaded into the pore of the ZIF-8/DOX@ZrO 2 nanocomposites for enhancing microwave thermal therapy. The tumor inhibition rate of ZIF-8/DOX@ZrO 2 @IL nanocomposites with synergistic microwave thermal therapy and chemotherapy is obviously higher than in other groups. In addition, the ZIF-8/DOX@ZrO 2 @IL nanocomposites are used for real-time monitoring of the therapeutic outcomes due to the excellent computed tomography contrast agent, ZrO 2 . Therefore, such a ZrO 2 coating strategy shows great promise for overcoming high toxicity of ZIF-8 nanoparticles, which offers a new platform for tumor synergistic microwave thermal therapy and chemotherapy using the ZIF-8/DOX@ZrO 2 @IL nanocomposite as a theranostic nanocarrier.
There are acknowledged risks of metastasis of cancer cells and obstructing cancer treatment from hypoxia. In this work, we design a multifunctional nanocomposite for treating hypoxia based on the oxygen release capability of CuO triggered by microwave (MW). Core–shell CuO@ZrO2 nanocomposites are prepared by confining CuO nanoparticles within the cavities of mesoporous ZrO2 hollow nanospheres. 1-Butyl-3-methylimidazolium hexafluorophosphate (IL) is loaded to the CuO@ZrO2 nanocomposites for improving microwave thermal therapy (MWTT). 1-Tetradecanol (PCM) is introduced to regulate the release of chemotherapeutic drugs of doxorubicin (DOX). Thus, the IL-DOX-PCM-CuO@ZrO2 multifunctional (IDPC@Zr) nanocomposites are obtained. Finally, IDPC@Zr nanocomposites are modified by monomethoxy polyethylene glycol sulfhydryl (mPEG-SH, 5 kDa) (IDPC@Zr-PEG nanocomposites). IDPC@Zr-PEG nanocomposites can produce oxygen in the tumor microenvironment during the course of tumor treatment, thereby alleviating the hypoxic state and improving the therapeutic effect. In vivo antitumor experiments demonstrate a very high tumor inhibition rate of 92.14%. In addition, computed tomography (CT) imaging contrast of the nanocomposites can be enhanced due to the high atomic number of Zr. Therefore, IDPC@Zr-PEG nanocomposites can be applied for monitoring the tumor-treatment process in real time. This combined therapy offers many opportunities, such as the production of oxygen from CuO nanoparticles by MW to alleviate hypoxia, the enhancement of combined treatment of MWTT and chemotherapy, and the potential application of CT imaging to visualize the treatment process, which therefore provides a promising method for the clinical treatment of tumors in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.