Creating high surface area nanocatalysts that contain stacking faults is a promising strategy to improve catalytic activity. Stacking faults can tune the reactivity of the active sites, leading to improved catalytic performance. The formation of branched metal nanoparticles with control of the stacking fault density is synthetically challenging. In this work, we demonstrate that varying the branch width by altering the size of the seed that the branch grows off is an effective method to precisely tune the stacking fault density in branched Ni nanoparticles. A high density of stacking faults across the Ni branches was found to lower the energy barrier for Ni 2+ /Ni 3+ oxidation and result in enhanced activity for electrocatalytic oxidation of 5-hydroxylmethylfurfural. These results show the ability to synthetically control the stacking fault density in branched nanoparticles as a basis for enhanced catalytic activity.
3D interconnected structures can be made with molecular precision or with micrometer size. However, there is no strategy to synthesize 3D structures with dimensions on the scale of tens of nanometers, where many unique properties exist. Here, we bridge this gap by building up nanosized gold cores and nickel branches that are directly connected to create hierarchical nanostructures. The key to this approach is combining cubic crystal–structured cores with hexagonal crystal–structured branches in multiple steps. The dimensions and 3D morphology can be controlled by tuning at each synthetic step. These materials have high surface area, high conductivity, and surfaces that can be chemically modified, which are properties that make them ideal electrocatalyst supports. We illustrate the effectiveness of the 3D nanostructures as electrocatalyst supports by coating with nickel-iron oxyhydroxide to achieve high activity and stability for oxygen evolution reaction. This work introduces a synthetic concept to produce a new type of high-performing electrocatalyst support.
We develop highly robust and stretchable conductive transparent electrodes based on silver nanowires (AgNWs) deposited on functionalized chitosan biopolymer substrates. 11-aminoundecanoic acid is introduced as a surface modifier for enhancing the chemical bond. The chemically functionalized AgNW films achieve a low sheet resistance of 12.2 ohm/sq with a high transmittance of 88.9%. In addition, stretchable alternating current-driven electroluminescent devices and stretchable transparent heaters have been fabricated with AgNW/chitosan thin-films which can be cut, stretched, bent, and twisted without performance degradation. With this approach, stretchable electronics prepared on bio-compatible substrates can be easily applied to curved surfaces or human skins. IMPACT STATEMENT We demonstrate highly robust and stretchable transparent conductive electrodes based on the AgNWs/chitosan biopolymer with the organic surface modifier. The films can realize future biocompatible wearable electronics on the human body.
We report on a new surface modifier which simultaneously improves electrical, optical, and mechanical properties of silver nanowire-based stretchable transparent electrodes. The transparent electrodes treated with 11-aminoundecanoic acid achieve a low sheet resistance of 26.0 ohm/sq and a high transmittance of 90% with an excellent stretchability. These improvements are attributed to the effective formation of a strong chemical bond between silver nanowire networks and elastomeric substrates by 11-aminoundecanoic acid treatment. The resistance change of the optimized silver nanowire/poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) (PEDOT:PSS) thin-films is only about 10% when the film is stretched by 120%. In addition, the chemical stability of stretchable silver nanowire films is significantly improved by the introduction of conductive PEDOT:PSS overcoat film. The optimized electrodes are utilized as high-performance stretchable transparent heaters, successfully illustrating its feasibility for future wearable electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.