Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors worldwide, and it is always the consequence of chronic hepatitis and liver cirrhosis. The nucleotide-binding domain, leucine-rich family (NLR), pyrin-containing 3 (NLRP3) inflammasome has been shown to orchestrate multiple innate and adaptive immune responses. However, little is known about its role in cancer. This study was performed to investigate the role of the NLRP3 inflammasome in the development and progression of HCC. The expression of NLRP3 inflammasome components was analyzed in HCC tissues and corresponding non-cancerous liver tissues at both the mRNA and protein levels. Our data demonstrate that the expression of all of the NLRP3 inflammasome components was either completely lost or significantly downregulated in human HCC, and that the deficiency correlated significantly with advanced stages and poor pathological differentiation. In addition, our data provide an overview of the expression of NLRP3 inflammasome components in the multi-stage development of HCC and indicate a surprising link between deregulation of the NLRP3 inflammasome molecular platform and HCC progression. In conclusion, this study presents a dynamic expression pattern of NLRP3 inflammasome components in multi-stage hepatocarcinogenesis and demonstrates that deregulated expression of the inflammasome is involved in HCC progression.
These results indicated deregulation of NLRP3/NLRP1 inflammasomes in patients with SLE, and suggested an important role for inflammasomes in the pathogenesis and progression of SLE.
Waterlogging stress is a common limiting factor for winter rapeseed, which greatly affects the growth and potential production. The present study was conducted to investigate the effects of waterlogging with different durations (0day (D0), 6days (D6) and 9days (D9)) and supplemental nitrogen fertilization (N1, 0 kg ha −1 ; N2, 30 kg ha −1 ; N3, 60 kg ha −1 and N4, 90 kg ha −1) on the physiological characteristics, dry matter and nitrogen accumulation in winter rapeseed (Chuanyou36). The results showed that the supplementary application of nitrogen fertilizer could effectively improve the physiological indexes of winter rapeseed in both pot and field experiments. The supplemental nitrogen increased the chlorophyll content in leaves, enhanced the activities of SOD, CAT, and POD, and decreased the MDA content in leaves and roots of rapeseed. The chlorophyll contents, the antioxidant enzyme activity of leaves and roots significantly increased under D6N3 and D9N4 conditions in both (pot and field) experiments. However, MDA contents significantly decreased compared with waterlogging without nitrogen application. Moreover, the application of nitrogen fertilizer after waterlogging increased the accumulation of dry matter and nitrogen in rapeseed at different growth stages. Therefore, waterlogging stress significantly inhibited the growth and development of rapeseed, but the application of nitrogen fertilizer could effectively reduce the damage of waterlogging. The N-induced increase in waterlogging tolerance of rapeseed might be attributed to the strong antioxidant defense system, maintenance of photosynthetic pigments and the nutrient balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.