Background Glaucoma can cause irreversible blindness to people’s eyesight. Since there are no symptoms in its early stage, it is particularly important to accurately segment the optic disc (OD) and optic cup (OC) from fundus medical images for the screening and prevention of glaucoma. In recent years, the mainstream method of OD and OC segmentation is convolution neural network (CNN). However, most existing CNN methods segment OD and OC separately and ignore the a priori information that OC is always contained inside the OD region, which makes the segmentation accuracy of most methods not high enough. Methods This paper proposes a new encoder–decoder segmentation structure, called RSAP-Net, for joint segmentation of OD and OC. We first designed an efficient U-shaped segmentation network as the backbone. Considering the spatial overlap relationship between OD and OC, a new Residual spatial attention path is proposed to connect the encoder–decoder to retain more characteristic information. In order to further improve the segmentation performance, a pre-processing method called MSRCR-PT (Multi-Scale Retinex Colour Recovery and Polar Transformation) has been devised. It incorporates a multi-scale Retinex colour recovery algorithm and a polar coordinate transformation, which can help RSAP-Net to produce more refined boundaries of the optic disc and the optic cup. Results The experimental results show that our method achieves excellent segmentation performance on the Drishti-GS1 standard dataset. In the OD and OC segmentation effects, the F1 scores are 0.9752 and 0.9012, respectively. The BLE are 6.33 pixels and 11.97 pixels, respectively. Conclusions This paper presents a new framework for the joint segmentation of optic discs and optic cups, called RSAP-Net. The framework mainly consists of a U-shaped segmentation skeleton and a residual space attention path module. The design of a pre-processing method called MSRCR-PT for the OD/OC segmentation task can improve segmentation performance. The method was evaluated on the publicly available Drishti-GS1 standard dataset and proved to be effective.
The automatic segmentation of skin lesions is considered to be a key step in the diagnosis and treatment of skin lesions, which is essential to improve the survival rate of patients. However, due to the low contrast, the texture and boundary are difficult to distinguish, which makes the accurate segmentation of skin lesions challenging. To cope with these challenges, this paper proposes an attention-guided network with densely connected convolution for skin lesion segmentation, called CSAG and DCCNet. In the last step of the encoding path, the model uses densely connected convolution to replace the ordinary convolutional layer. A novel attention-oriented filter module called Channel Spatial Fast Attention-guided Filter (CSFAG for short) was designed and embedded in the skip connection of the CSAG and DCCNet. On the ISIC-2017 data set, a large number of ablation experiments have verified the superiority and robustness of the CSFAG module and Densely Connected Convolution. The segmentation performance of CSAG and DCCNet is compared with other latest algorithms, and very competitive results have been achieved in all indicators. The robustness and cross-data set performance of our method was tested on another publicly available data set PH2, further verifying the effectiveness of the model.
The segmentation of retinal vessels is critical for the diagnosis of some fundus diseases. Retinal vessel segmentation requires abundant spatial information and receptive fields with different sizes while existing methods usually sacrifice spatial resolution to achieve real-time reasoning speed, resulting in inadequate vessel segmentation of low-contrast regions and weak anti-noise interference ability. The asymmetry of capillaries in fundus images also increases the difficulty of segmentation. In this paper, we proposed a two-branch network based on multi-scale attention to alleviate the above problem. First, a coarse network with multi-scale U-Net as the backbone is designed to capture more semantic information and to generate high-resolution features. A multi-scale attention module is used to obtain enough receptive fields. The other branch is a fine network, which uses the residual block of a small convolution kernel to make up for the deficiency of spatial information. Finally, we use the feature fusion module to aggregate the information of the coarse and fine networks. The experiments were performed on the DRIVE, CHASE, and STARE datasets. Respectively, the accuracy reached 96.93%, 97.58%, and 97.70%. The specificity reached 97.72%, 98.52%, and 98.94%. The F-measure reached 83.82%, 81.39%, and 84.36%. Experimental results show that compared with some state-of-art methods such as Sine-Net, SA-Net, our proposed method has better performance on three datasets.
Accurate segmentation of retinal vessels is critical to the mechanism, diagnosis, and treatment of many ocular pathologies. Due to the poor contrast and inhomogeneous background of fundus imaging and the complex structure of retinal fundus images, this makes accurate segmentation of blood vessels from retinal images still challenging. In this paper, we propose an effective framework for retinal vascular segmentation, which is innovative mainly in the retinal image pre-processing stage and segmentation stage. First, we perform image enhancement on three publicly available fundus datasets based on the multiscale retinex with color restoration (MSRCR) method, which effectively suppresses noise and highlights the vessel structure creating a good basis for the segmentation phase. The processed fundus images are then fed into an effective Reverse Fusion Attention Residual Network (RFARN) for training to achieve more accurate retinal vessel segmentation. In the RFARN, we use Reverse Channel Attention Module (RCAM) and Reverse Spatial Attention Module (RSAM) to highlight the shallow details of the channel and spatial dimensions. And RCAM and RSAM are used to achieve effective fusion of deep local features with shallow global features to ensure the continuity and integrity of the segmented vessels. In the experimental results for the DRIVE, STARE and CHASE datasets, the evaluation metrics were 0.9712, 0.9822 and 0.9780 for accuracy (Acc), 0.8788, 0.8874 and 0.8352 for sensitivity (Se), 0.9803, 0.9891 and 0.9890 for specificity (Sp), area under the ROC curve(AUC) was 0.9910, 0.9952 and 0.9904, and the F1-Score was 0.8453, 0.8707 and 0.8185. In comparison with existing retinal image segmentation methods, e.g. UNet, R2UNet, DUNet, HAnet, Sine-Net, FANet, etc., our method in three fundus datasets achieved better vessel segmentation performance and results.
Knowledge graph, as a semantic network, provides a method to model knowledge from the perspective of entities and their relationships. Since a large quantity of material knowledge is widely distributed, using the structure of the knowledge graph is an effective approach to clarify the internal connections between related knowledge. Named entity recognition is a crucial step to construct a knowledge graph. However, most of the professional domain datasets are label-free and collected from multiple heterogeneous sources. To identify the entities from these datasets, a rule-based and deep learning hybrid method is proposed. The knowledge extracted by regular expression was used to semiautomatically label the corpus, and then trained by deep learning model, which achieved good results. The constructed knowledge graph regarding to the commonly used steels is of great significance to the integration and management of related knowledge, and it lays a foundation for future engineering application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.