The inconsistency of the detection period of blast furnace data and the large time delay of key parameters make the prediction of the hot metal silicon content face huge challenges. Aiming at the problem that the hot metal silicon content is not consistent with the detection period of time series of multiple control parameters, the cubic spline interpolation fitting model was used to realize the data integration of multiple detection periods. The large time delay of the blast furnace iron making process was analyzed. Moreover, Spearman analysis was combined with the weighted moving average method to optimize the data set of silicon content prediction. Aiming at the problem of low prediction accuracy of the ordinary neural network model, genetic algorithm was used to optimize parameters on the BP neural network model to improve the convergence speed of the model to achieve global optimization. Combined with the autocorrelation analysis of the hot metal silicon content, a modified model for the prediction of hot metal silicon content based on error analysis was proposed to further improve the accuracy of the prediction. The model comprehensively considers problems such as data detection inconsistency, large time delay, and inaccuracy of prediction results. Its average absolute error is 0.05009, which can be used in actual production.
The silicon content of the molten iron is an important indicator of the furnace temperature trend in blast furnace smelting. In view of the multi-scale, non-linear, large time lag and strong coupling characteristics of the blast furnace smelting process, a dynamic prediction model for the silicon content of molten iron is established based on the analysis of comprehensive furnace temperature characterization data. The isolated forest algorithm is used to detect anomalies and analyze the causes of the anomalies in conjunction with the blast furnace mechanism. The maximum correlation-minimum redundancy mutual information feature selection method is used to reduce the dimensionality of the furnace temperature characterization data. The grey correlation analysis with balanced proximity is used to obtain the correlation between the furnace temperature characterization parameters and the silicon content of the molten iron at different time lags and to integrate the furnace temperature characterization data set. The GRA-FCM model is used to divide the parameter set of the integrated furnace temperature characterization and construct a parameter directed network from multiple control parameters to multiple state parameters. The GWO-SVR model is used to predict the state parameters of each delay step by step to achieve dynamic prediction of the silicon content of the molten iron. Finally, the control parameters are adjusted backwards according to the prediction results of the state parameters and the silicon content of the molten iron and expert experience to achieve accurate control of the furnace temperature. Starting from the actual production situation of a blast furnace, the characteristic parameters are divided into control parameters and state parameters. This model establishes a multi-step dynamic prediction and closed-loop control model of “control parameters-state parameters-silicon content in hot metal-control parameters”.
In order to reveal the dissolution behavior of iron tailings in blast furnace slag, the main component of iron tailings, SiO2, was used for research. Aiming at the problem of information loss and inaccurate extraction of tracking molten SiO2 particles in high temperature, a method based on the improved DeepLab v 3+ network was proposed to track, segment, and extract small object particles in real time. First, by improving the decoding layer of the DeepLab v 3+ network, construct dense ASPP (atrous spatial pyramid pooling) modules with different dilation rates to optimize feature extraction, increase the shallow convolution of the backbone network, and merge it into the upper convolution decoding part to increase detailed capture. Secondly, integrate the lightweight network MobileNet v3 to reduce network parameters, further speed up image detection, and reduce the memory usage to achieve real-time image segmentation and adapt to low-level configuration hardware. Finally, improve the expression of the loss function for the binary classification model of small object in this paper, combining the advantages of the Dice Loss binary classification segmentation and the Focal Loss balance of positive and negative samples, solving the problem of unbalanced dataset caused by the small proportion of positive samples. Experimental results show that MIoU (mean intersection over union) of the proposed model for small object segmentation is 6% higher than that of the original model, the overall MIoU is increased by 3%, and the execution time and memory consumption are only half of the original model, which can be well applied to real-time tracking and segmentation of small particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.