Assembly-line polyketide synthases (PKSs) are molecular factories that produce diverse metabolites with wide-ranging biological activities. PKSs usually work by constructing and modifying the polyketide backbone successively. Here, we present the cryo-EM structure of CalA3, a chain release PKS module without an ACP domain, and its structures with amidation or hydrolysis products. The domain organization reveals a unique “∞”-shaped dimeric architecture with five connected domains. The catalytic region tightly contacts the structural region, resulting in two stabilized chambers with nearly perfect symmetry while the N-terminal docking domain is flexible. The structures of the ketosynthase (KS) domain illustrate how the conserved key residues that canonically catalyze C–C bond formation can be tweaked to mediate C–N bond formation, revealing the engineering adaptability of assembly-line polyketide synthases for the production of novel pharmaceutical agents.
People’s lives and health are gravely threatened by non-small-cell lung cancer (NSCLC). Mutations in epidermal growth factor receptor (EGFR), a transmembrane receptor tyrosine kinase, are considered one of the causes of NSCLC. Tyrosine kinase inhibitors (TKIs) are typically used to treat patients with EGFR mutations. In this study, Gefitinib, a member of the first generation of TKIs, was used to treat an EGFR single-point mutation (single mutant, SM). Patients harboring additional T790M mutations in the kinase domain of the EGFR were resistant to Gefitinib. Then, the L858R/T790M double mutation (double mutant, DM) was treated with the second generation of TKIs, such as Afatinib. Here, we constructed four computational models to uncover the structural basis between EGFR mutants (SM and DM) and corresponding inhibitors (Gefitinib and Afatinib). The binding energy in the G-SM (representing Gefitinib in complex with SM) system was larger than that in the G-DM (Representing Gefitinib in complex with DM) system. Gefitinib’s affinity with L792 and M793 was drastically reduced by the longer side chain of M790 in the G-DM system, which pushed Gefitinib outside of the pocket. Additionally, the A-DM system’s binding energy was higher than the G-DM system’s. Afatinib, unlike Gefitinib, induced the P-loop region to move downwards to decrease the pocket entrance size to accommodate Afatinib properly and stably in the A-DM (Afatinib in complex with DM) system. These results uncover the details of interactions between EGFR and its inhibitors and shed light on the design of new tyrosine kinase inhibitors.
Dehydratase (DH), a domain located at polyketide synthase (PKS) modules, commonly catalyzes the dehydration of β-hydroxy to an α,β-unsaturated acyl intermediate. As a unique bifunctional dehydratase, AmbDH3 (the DH domain of module 3 of the ambruticin PKS) is verified to be responsible for both dehydration and the following pyran-forming cyclization. Besides, in vitro studies showed that its catalytic efficiency varies with different chiral substrates. However, the detailed molecular mechanism of AmbDH3 remains unclear. In this work, the structural rationale for the substrate specificity (2R/2S-and 6R/6S-substrates) in AmbDH3 was elucidated and the complete reaction pathways including dehydration and cyclization were presented. Both MD simulations and binding free energy calculations indicated AmbDH3 had a stronger preference for 2R-substrates (2R6R-2, 2R6S-3) than 2S-substrates (2S6R-1), and residue H51 and G61 around the catalytic pocket were emphasized by forming stable hydrogen bonds with 2R-substrates. In addition, AmbDH3's mild tolerance at C6 was explained by comparison of substrate conformation and hydrogen bond network in 6Sand 6R-substrate systems. The QM/MM results supported a consecutive one-base dehydration and cyclization mechanism for 2R6S-3 substrate with the energy barrier of 25.2 kcal mol À 1 and 24.5 kcal mol À 1 , respectively. Our computational results uncover the substrate recognition and catalytic process of the first bifunctional dehydratase-cyclase AmbDH3, which will shed light on the application of multifunctional DH domains in PKSs for diverse natural product analogs and benefit the chemoenzymatic synthesis of stereoselective pyran-containing products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.