At present, the crystal size of sodium chloride prepared by a traditional crystallization process (such as stirred crystallization) is inhomogeneous, and it has a great quantity of fine grains in crystallizer. This work presents a novel approach for the growth of sodium chloride from supersaturated solutions by reaction-extractive crystallization in a spray fluidized bed crystallizer (SFBC), in which sodium sulfate solution is transformed into potassium chloride and sulphuric acid based on a reactive extraction-crystallization process using triisooctylamine (TOL) in n-octanol as the extraction system. This paper mainly studies the effect of operating conditions (e.g., circulation flow rate, velocity ratio of oil and aqueous phases, crystallization temperature, hydraulic residence time, and feed velocity) on the crystal size distribution (CSD) during the crystallization process of sodium chloride in a SFBC. Experimental results show that the optimum conditions are 1.0362 m/s as the best circulation flow rate, 9.5 : 8.5 as the best velocity ratio of oil and aqueous phases, 313 K as the best temperature, 4320 s as residence time, and 8 mL.min−1 as the best feed velocity. Meanwhile, the proposed extraction kinetic model about extraction rates is developed and validated against data from the SFBC. And it proves that the reactive extraction system is controlled by diffusion and chemical reaction. Analysis of the extraction kinetic model and comparison with experiments reveal that the extraction kinetic model results are in well agreement with experiments. Furthermore, the uniform and large crystals can be obtained in a spray fluidized bed crystallizer without special concentration since extraction and crystallization are carried out in the same equipment. In addition, all of the sodium chloride products prepared under the optimal conditions in SFBC show a better CSD performance than the stirred crystallization. This research demonstrates that this process enables controlling the crystal size in a rather wide range, thus further underlining the potential of this technique for applications in the crystallization industry.
Colorectal cancer (CRC) is one of the most common malignant tumours and the third most common cause of cancer deaths worldwide, with high morbidity and mortality. Circadian clocks are widespread in humans and temporally regulate physiologic functions to maintain homeostasis. Recent studies showed that circadian components were strong regulators of the tumour immune microenvironment (TIME) and the immunogenicity of CRC cells. Therefore, insight into immunotherapy from the perspective of circadian clocks can be promising. Although immunotherapy, especially immune checkpoint inhibitor (ICI) treatment, has been a milestone in cancer treatment, greater accuracy is still needed for selecting patients who will respond positively to immunotherapy with minimal side effects. In addition, there were few reviews focusing on the role of the circadian components in the TIME and the immunogenicity of CRC cells. Therefore, this review highlights the crosstalk between the TIME in CRC and the immunogenicity of CRC cells based on the circadian clocks. With the goal to achieve the possibility that patients with CRC can benefit most from the ICI treatment, we provide potential evidence and a novel idea for building a predictive framework combined with circadian factors, searching for enhancers of ICIs targeting circadian components and clinically implementing the timing of ICI treatment for patients with CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.