Aiming to construct small diameter (ID <6 mm) off‐the‐shelf tissue‐engineered vascular grafts, the end‐group heparinizd poly(ε‐caprolactone) (PCL) is synthesized by a three‐step process and then electrospun into an inner layer of double‐layer vascular scaffolds (DLVSs) showing a hierarchical double distribution of nano‐ and microfibers. Afterward, PCL without the end‐group heparinization is electrospun into an outer layer. A steady release of grafted heparin and the existence of a glycocalyx structure give the grafts anticoagulation activity and the conjugation of heparin also improves hydrophilicity and accelerates degradation of the scaffolds. The DLVSs are evaluated in six rabbits via a carotid artery interpositional model for a period of three months. All the grafts are patent until explantation, and meanwhile smooth endothelialization and fine revascularization are observed in the grafts. The composition of the outer layer of scaffolds exhibits a significant effect on the aneurysm dilation after implantation. Only one aneurysm dilation is detected at two months and no calcification is formed in the follow‐up term. How to prevent aneurysms remains a challenging topic.
In stroke inpatients over sixty years of age, it is necessary to distinguish the patients with multiple previous cerebral infarctions, high NIHSS score, masticatory muscle paralysis, abolition of gag reflex for early detection and rehabilitation of dysphagia.
In the field of vascular graft research, poly-ε-caprolactone (PCL) is used owing to its good mechanical strength and biocompatibility. In this study, PCL scaffold was prepared by electrospinning and surface modification with heparin via hexamethylenediamine. Then the scaffolds were implanted into the infrarenal abdominal aorta of Wistar rats and contrast-enhanced micro-ultrasound was used to monitor the patency of grafts after implantation. These grafts were extracted from the rats at 1, 3, and 6 months for histological analysis, immunofluorescence staining, and scanning electron microscopy observation. Although some grafts experienced aneurysmal change, results showed that all implanted grafts were patent during the course of 6 months and these grafts demonstrated well-organized neotissue with endothelium formation, smooth muscle regeneration, and extracellular matrix formation. Such findings confirm feasibility to create heparin-conjugated scaffolds of next-generation vascular grafts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.