The invasion and metastasis of malignant tumor cells lead to normal tissue destruction and are major prognostic factors for many malignant cancers. Long non-coding RNA (LncRNA) is associated with occurrence, development and prognoses of non-small cell lung cancer (NSCLC), but its mechanisms of action involved in tumor invasion and metastasis are not clear. In this study, we screened and detected the expression of LncRNA in two NSCLC lines 95D and 95C by using high throughput LncRNA chip. We found that TATDN1 (Homo sapiens TatD DNase domain containing 1, TATDN1), one of LncRNAs, was highly expressed in 95D cells and NSCLC tumor tissues compared to 95C cells. Knockdown of TATDN1–1 by shRNA significantly inhibited cell proliferation, adhesion, migration and invasion in 95D cells. Further mechanism study showed that TATDN1 knockdown suppressed the expression of E-cadherin, HER2, β-catenin and Ezrin. Moreover, knockdown TATDN1 also inhibited tumor growth and metastasis in a 95D mouse model in vivo by inhibiting β-catenin and Ezrin. These data indicate that TATDN1 expression is associated with 95D cells' higher potential of invasion and metastasis, and suggest that TATDN1 may be a potential prognostic factor and therapeutic target for NSCLCs.
Non-small-cell lung cancer (NSCLC) is a kind of lung cancer with high incidence and poor outcomes all over the world. Studies have validated that the upregulation of long noncoding RNA LINC00657 is related to several cancers.Nevertheless, the underlying regulatory mechanism of LINC00657 in NSCLC has not been well elucidated. In the present study, quantitative reverse-transcription polymerase chain reaction (RT-qPCR) revealed that LINC00657 level was apparently elevated in NSCLC cells. Loss-of function assays demonstrated that LINC00657 silence retarded cell proliferation and migration in NSCLC cells.
Lung adenocarcinoma (LUAD) is the most common histological subtype of non-small cell lung cancer, but novel biomarkers for early diagnosis are lacking. Extensive effort has been exerted to identify miRNA biomarkers in LUAD. Unfortunately, high inter-lab variability and small sample sizes have produced inconsistent conclusions in this field. To resolve the above-mentioned limitations, we performed a comprehensive analysis based on LUAD miRNome profiling studies using the robust rank aggregation (RRA) method. Moreover, miRNA-gene interaction network, pathway enrichment analysis and Kaplan-Meier survival curves were used to investigate the clinical values and biological functions of the identified miRNAs. A total of six common differentially expressed miRNAs (DEMs) were identified in LUAD. An independent cohort further confirmed that four miRNAs (miR-21-5p, miR-210-3p, miR-182-5p and miR-183-5p) were up-regulated and two miRNAs (miR-126-3p and miR-218-5p) were down-regulated in LUAD tissues. Pathway enrichment analysis also suggested that the above-listed six DEMs may affect LUAD progression via the estrogen signaling pathway. Survival analysis based on the TCGA dataset revealed the potential prognostic values of six DEMs in patients with LUAD (P-value<0.01). In conclusion, we identified a panel of six miRNAs from LUAD using miRNome profiling studies. Our results provide evidence for the use of these six DEMs as novel diagnostic and prognostic biomarkers for LUAD patients.
Acute kidney injury (AKI) is a complex syndrome with an abrupt decrease of kidney function, which is associated with high morbidity and mortality. Sepsis is the common cause of AKI. Mounting evidence has demonstrated that long non-coding RNAs (lncRNAs) play critical roles in the development and progression of sepsis-induced AKI. In this study, we aimed to illustrate the function and mechanism of lncRNA SNHG14 in lipopolysaccharide (LPS)-induced AKI. We found that SNHG14 was highly expressed in the plasma of sepsis patients with AKI. SNHG14 inhibited cell proliferation and autophagy and promoted cell apoptosis and inflammatory cytokine production in LPS-stimulated HK-2 cells. Functionally, SNHG14 acted as a competing endogenous RNA (ceRNA) to negatively regulate miR-495-3p expression in HK-2 cells. Furthermore, we identified that HIPK1 is a direct target of miR-495-3p in HK-2 cells. We also revealed that the SNHG14/miR-495-3p/HIPK1 interaction network regulated HK-2 cell proliferation, apoptosis, autophagy, and inflammatory cytokine production upon LPS stimulation. In addition, we demonstrated that the SNHG14/miR-495-3p/HIPK1 interaction network regulated the production of inflammatory cytokines (TNF-α, IL-6, and IL-1β) via modulating NF-κB/p65 signaling in LPS-challenged HK-2 cells. In conclusion, our findings suggested a novel therapeutic axis of SNHG14/miR-495-3p/HIPK1 to treat sepsis-induced AKI.
This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.