Attention mechanism, especially channel attention, has gained great success in the computer vision field. Many works focus on how to design efficient channel attention mechanisms while ignoring a fundamental problem, i.e., using global average pooling (GAP) as the unquestionable pre-processing method. In this work, we start from a different view and rethink channel attention using frequency analysis. Based on the frequency analysis, we mathematically prove that the conventional GAP is a special case of the feature decomposition in the frequency domain. With the proof, we naturally generalize the pre-processing of channel attention mechanism in the frequency domain and propose FcaNet with novel multi-spectral channel attention. The proposed method is simple but effective. We can change only one line of code in the calculation to implement our method within existing channel attention methods. Moreover, the proposed method achieves state-of-the-art results compared with other channel attention methods on image classification, object detection, and instance segmentation tasks. Our method could improve by 1.8% in terms of Top-1 accuracy on ImageNet compared with the baseline SENet-50, with the same number of parameters and the same computational cost. Our code and models will be made publicly available.
Spectral clustering has been widely used in various aspects, especially the machine learning fields. Clustering with similarity matrix and low-dimensional representation of data is the main reason of its promising performance shown in spectral clustering. However, such similarity matrix and low-dimensional representation directly derived from input data may not always hold when the data are high dimensional and has complex distribution. First, the similarity matrix simply based on the distance measurement might not be suitable for all kinds of data. Second, the low-dimensional representation might not be able to reflect the manifold structure of the original data. In this brief, we propose a novel linear space embedded clustering method, which uses adaptive neighbors to address the above-mentioned problems. Linearity regularization is used to make the data representation a linear embedded spectral. We also use adaptive neighbors to optimize the similarity matrix and clustering results simultaneously. Extensive experimental results show promising performance compared with the other state-of-the-art algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.