Aims The goal of this study was to identify the induced resistance pathway mediated by biochar in the tomatoBotrytis cinerea pathosystem. Methods Tomato wild types and mutants modified in their salicylic acid (SA), ethylene (ET) or jasmonic acid (JA) metabolism were grown in a potting medium amended with biochar produced at 450ºC from greenhouse wastes, to identify the possible pathway(s) involved in biochar-mediated resistance to B. cinerea.Early cellular response of H 2 O 2 accumulation was biochemically tested, and the transcriptional changes of 12 defense-related genes upon B. cinerea challenge of detached leaflets were analyzed. Results Biochar amendment resulted in about 50 % reduction in B. cinerea disease severity in all tested genotypes with the exception of a JA deficient mutant, def1. Biochar amendment induced priming of early as well as late-acting defense responses particularly in the genes Pti5 (ET-related) and Pi2 (JA-related), which are known to be crucial in resistance against B. cinerea. Stronger and earlier H 2 O 2 accumulation subsequent to B. cinerea inoculation in all genotypes was observed as a result of biochar amendment, with the exception of the def1 mutation. Conclusion Biochar-mediated IR in the B. cinerea-tomato pathosystem involves the JA pathway.
Gray mold caused by Botrytis cinerea is a major cause of economic losses in strawberry fruit production, limiting fruit shelf life and commercialization. When the fungus infects Fragaria × ananassa strawberry at flowering or unripe fruit stages, symptoms develop after an extended latent phase on ripe fruits before or after harvesting. To elucidate the growth kinetics of B. cinerea on flower/fruit and the molecular responses associated with low susceptibility of unripe fruit stages, woodland strawberry Fragaria vesca flowers and fruits, at unripe white and ripe red stages, were inoculated with B. cinerea. Quantification of fungal genomic DNA within 72 h postinoculation (hpi) showed limited fungal growth on open flower and white fruit, while on red fruit, the growth was exponential starting from 24 hpi and sporulation was observed within 48 hpi. RNA sequencing applied to white and red fruit at 24 hpi showed that a total of 2,141 genes (12.5% of the total expressed genes) were differentially expressed due to B. cinerea infection. A broad transcriptional reprogramming was observed in both unripe and ripe fruits, involving in particular receptor and signaling, secondary metabolites, and defense response pathways. Membrane-localized receptor-like kinases and nucleotide-binding site leucine-rich repeat genes were predominant in the surveillance system of the fruits, most of them being downregulated in white fruits and upregulated in red fruits. In general, unripe fruits exhibited a stronger defense response than red fruits. Genes encoding for pathogenesis-related proteins and flavonoid polyphenols as well as genes involved in cell-wall strengthening were upregulated, while cell-softening genes appeared to be switched off. As a result, B. cinerea remained quiescent in white fruits, while it was able to colonize ripe red fruits.
Gray mold (Botrytis cinerea) is an important disease of tomato (Solanum lycopersicum). This study examined defense-related gene expression involved in the resistance to B. cinerea that is induced in tomato plants by benzothiadiazole and Trichoderma harzianum T39 soil drench. In whole plants, transcriptional changes related to salicylic acid and ethylene were induced by the application of a 0.01% benzothiadiazole solution, whereas changes related to jasmonic acid were induced by the application of a 0.4% T39 suspension. On detached leaves, soil treatment by T39 led to enhanced resistance to B. cinerea infection that was proportional to the concentration of the T39 suspension. By 5 days after pathogen inoculation, the plants that had received the 0.04% T39 drench exhibited 62% less severe disease than the untreated plants. The 0.4% T39 drench led to an 84% reduction in disease severity. Observations of B. cinerea infection in leaves harvested from plants grown in the treated soils revealed that drenching with a T39 suspension induces systemic resistance against B. cinerea and primes salicylic acid- and ethylene-related gene expression in a manner proportional to the concentration of the biocontrol agent. Benzothiadiazole treatment induced resistance to gray mold independently of salicylic acid and led to strong priming of two genes known to be involved in defense against B. cinerea, Pti5 and PI2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.