In the rational cryptographic protocol, the two rational players often fall into the prisoner's dilemma, which is also the case for the rational secret sharing we consider in this paper. First, it is proved that rational secret sharing has a sequential equilibrium in the natural state, so that rational participants will fall into the prisoner's dilemma, resulting in no participants being able to reconstruct the secret correctly. Next, to solve this problem, we propose an incentive-compatible rational secret scheme. Specifically, the game tree with imperfect information is constructed to facilitate our analysis and proof, and the strictly dominated strategies are directly eliminated to simplify the game tree. Further more, we describe the motivation of the verifier. Then, we prove that rational players have no motivation to deviate from honest behavior using sequential equilibrium so that rational players can reconstruct the secret correctly. Finally, we complete the simulation using the smart contract and analyze our entire scheme. In addition, the game of our scheme does not need to be repeated multiple times to reach sequential equilibrium, i.e., the game always follows the rational path.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.