This paper addresses a two-dimensional multizone sound field reproduction approach using a wave-domain method. The desired sound fields in the bright and dark zones are described as orthogonal expansions of basis functions over the regions. The loudspeaker weights are obtained by maximizing the contrast among multiple zones in the wave domain. Simulation results demonstrate that compared with the conventional acoustic contrast control approach, the proposed method improves the level of acoustic contrast and array gain over the entire control region and is less sensitive to the selection of the regularization parameter.
This paper proposes a three-dimensional wave-domain acoustic contrast control method to reproduce a multizone sound field using a circular loudspeaker array. In this method, sound field analysis is based on spherical harmonic decomposition, and the loudspeaker weights are obtained by maximizing the acoustic energy contrast between the predefined bright zone and dark zone. Simulation results show that the proposed method provides good multizone separation performance over a large spatial region and requires lower-order spherical harmonics, resulting in a much lower number of microphones required to measure the acoustic transfer functions.
This paper proposes a multiple signal classification (MUSIC) framework for direction-of-arrival estimation by combining multiple circular arrays in the circular-harmonics domain. We jointly transform the received signals of all sub-arrays into the circular harmonics domain to generate a set of sound field coefficients containing the direction information of the sound sources. These coefficients are then formulated in a form in which MUSIC algorithm can be applied. Compared with the conventional circular-harmonics-domain localization methods, which are based on a single circular array, the proposed method can provide sufficient spatial resolution over different frequency ranges by adjusting the distribution of sub-arrays. Furthermore, the mean square error of the estimated sound field coefficients is derived for guiding this adjustment. Numerical simulation results indicate that a reasonable distribution of sub-arrays can effectively avoid the performance degradation caused by the zeros of Bessel functions, which is an inherent problem of the modal array signal processing. Simulation and experimental results with different configuration parameters demonstrate that the proposed method provides a better localization performance compared to the state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.