Dermal fibroblasts represent a heterogeneous population of cells with diverse features that remain largely undefined. We reveal the presence of at least two fibroblast lineages in murine dorsal skin. Lineage tracing and transplantation assays demonstrate that a single fibroblast lineage is responsible for the bulk of connective tissue deposition during embryonic development, cutaneous wound healing, radiation fibrosis, and cancer stroma formation. Lineage-specific cell ablation leads to diminished connective tissue deposition in wounds and reduces melanoma growth. Using flow cytometry, we identify CD26/DPP4 as a surface marker that allows isolation of this lineage. Small molecule–based inhibition of CD26/DPP4 enzymatic activity during wound healing results in diminished cutaneous scarring. Identification and isolation of these lineages hold promise for translational medicine aimed at in vivo modulation of fibrogenic behavior.
The increased risk of disease and decreased capacity to respond to tissue insult in the setting of aging results from complex changes in homeostatic mechanisms, including the regulation of oxidative stress and cellular heterogeneity. In aged skin, the healing capacity is markedly diminished resulting in a high risk for chronic wounds. Stem cell-based therapies have the potential to enhance cutaneous regeneration, largely through trophic and paracrine activity. Candidate cell populations for therapeutic application include adult mesenchymal stem cells, embryonic stem cells and induced pluripotent stem cells. Autologous cell-based approaches are ideal to minimize immune rejection but may be limited by the declining cellular function associated with aging. One strategy to overcome age-related impairments in various stem cell populations is to identify and enrich with functionally superior stem cell subsets via single cell transcriptomics. Another approach is to optimize cell delivery to the harsh environment of aged wounds via scaffold-based cell applications to enhance engraftment and paracrine activity of therapeutic stem cells. In this review, we shed light on challenges and recent advances surrounding stem cell therapies for wound healing and discuss limitations for their clinical adoption.
There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation.wound healing | diabetes | drug delivery | small molecule | angiogenesis D iabetes mellitus affects over 25 million people in the United States (1, 2) and costs nearly $250 billion per year (3). Chronic diabetic wounds and decubiti are important long-term sequalae of both diabetes mellitus types 1 and 2 (4). There is a high mortality in diabetic patients who develop decubiti (5-7), and owing to prolonged disability and the high rates of recurrence these wounds represent an especially severe complication of diabetes (8). This is further underscored by the fact that diabetic nonhealing wounds are the leading cause of nontraumatic amputations in the United States (3, 9-11). As such, there is a clear need for new approaches to effectively manage and treat diabetic ulcers.The propensity for wound development in diabetes is associated with a reduced capacity for ischemia-driven neovascularization (12, 13). Hypoxia inducible factor-1 (HIF-1), which consists of a highly regulated α-subunit and a constitutively expressed β-subunit, is a critical transcriptional regulator of the normal cellular response to hypoxia, promoting progenitor cell recruitment, proliferation, survival, and neovascularization (14, 15). In nondiabetics, hypoxia causes stabilization of HIF-1α protein by preventing the normal rapid proteasomal degradation of HIF-1α. It does this by inhibiting the prolyl hydroxylases (PHDs), which hydroxylate specific prolyl residues on HIF-1α. Without proline hydroxylation HIF-1α is not ...
Scarring and tissue fibrosis represent a significant source of morbidity in the United States. Despite considerable research focused on elucidating the mechanisms underlying cutaneous scar formation, effective clinical therapies are still in the early stages of development. A thorough understanding of the various signaling pathways involved is essential to formulate strategies to combat fibrosis and scarring. While initial efforts focused primarily on the biochemical mechanisms involved in scar formation, more recent research has revealed a central role for mechanical forces in modulating these pathways. Mechanotransduction, which refers to the mechanisms by which mechanical forces are converted to biochemical stimuli, has been closely linked to inflammation and fibrosis and is believed to play a critical role in scarring. This review provides an overview of our current understanding of the mechanisms underlying scar formation, with an emphasis on the relationship between mechanotransduction pathways and their therapeutic implications.
IntroductionPathophysiologic changes associated with diabetes impair new blood vessel formation and wound healing. Mesenchymal stem cells derived from adipose tissue (ASCs) have been used clinically to promote healing, although it remains unclear whether diabetes impairs their functional and therapeutic capacity.MethodsIn this study, we examined the impact of diabetes on the murine ASC niche as well as on the potential of isolated cells to promote neovascularization in vitro and in vivo. A novel single-cell analytical approach was used to interrogate ASC heterogeneity and subpopulation dynamics in this pathologic setting.ResultsOur results demonstrate that diabetes alters the ASC niche in situ and that diabetic ASCs are compromised in their ability to establish a vascular network both in vitro and in vivo. Moreover, these diabetic cells were ineffective in promoting soft tissue neovascularization and wound healing. Single-cell transcriptional analysis identified a subpopulation of cells which was diminished in both type 1 and type 2 models of diabetes. These cells were characterized by the high expression of genes known to be important for new blood vessel growth.ConclusionsPerturbations in specific cellular subpopulations, visible only on a single-cell level, represent a previously unreported mechanism for the dysfunction of diabetic ASCs. These data suggest that the utility of autologous ASCs for cell-based therapies in patients with diabetes may be limited and that interventions to improve cell function before application are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.