This research was designed to elucidate the role of exopolysaccharides (EPS) producing bacterial strains for the amelioration of drought stress in wheat. Bacterial strains were isolated from a farmer’s field in the arid region of Pakistan. Out of 24 isolated stains, two bacterial strains, Bacillus subtilis (Accession No. MT742976) and Azospirillum brasilense (Accession No. MT742977) were selected, based on their ability to produce EPS and withstand drought stress. Both bacterial strains produced a good amount of EPS and osmolytes and exhibited drought tolerance individually, however, a combination of these strains produced higher amounts of EPS (sugar 6976 µg/g, 731.5 µg/g protein, and 1.1 mg/g uronic acid) and osmolytes (proline 4.4 µg/mg and sugar 79 µg/mg) and significantly changed the level of stress-induced phytohormones (61%, 49% and 30% decrease in Indole Acetic Acid (IAA), Gibberellic Acid (GA), and Cytokinin (CK)) respectively under stress, but an increase of 27.3% in Abscisic acid (ABA) concentration was observed. When inoculated, the combination of these strains improved seed germination, seedling vigor index, and promptness index by 18.2%, 23.7%, and 61.5% respectively under osmotic stress (20% polyethylene glycol, PEG6000). They also promoted plant growth in a pot experiment with an increase of 42.9%, 29.8%, and 33.7% in shoot length, root length, and leaf area, respectively. Physiological attributes of plants were also improved by bacterial inoculation showing an increase of 39.8%, 61.5%, and 45% in chlorophyll a, chlorophyll b, and carotenoid content respectively, as compared to control. Inoculations of bacterial strains also increased the production of osmolytes such asproline, amino acid, sugar, and protein by 30%, 23%, 68%, and 21.7% respectively. Co-inoculation of these strains enhanced the production of antioxidant enzymes such as superoxide dismutase (SOD) by 35.1%, catalase (CAT) by 77.4%, and peroxidase (POD) by 40.7%. Findings of the present research demonstrated that EPS, osmolyte, stress hormones, and antioxidant enzyme-producing bacterial strains impart drought tolerance in wheat and improve its growth, morphological attributes, physiological parameters, osmolytes production, and increase antioxidant enzymes.
Tannery-affected surface soils from 72 sampling sites from industrial area of Sialkot district, Pakistan, were collected and analyzed for nine physicochemical parameters, nine heavy metals, and four macro-nutrients. Most of the soils were poor in organic matter (0.11-2.98 %), basic in nature with pH (7.1-10.6) and electrical conductivity (1.2-17.9 mS/ cm). Mean concentration of total dissolved solids, Cl 1-, alkalinity, NO 3 1 -N, salinity, and PO 4 3-was 3,093 mg/L, 6,587, 3,929, 301.3, 10.3, and 1.7 mg/kg. The results showed that concentration of macro-nutrients was in the order: Na[Mg[K[Ca whereas heavy metals followed the order: Cr [Fe[Ni[Mn[Cu[Zn[Co[Pb[Cd. Factor analysis based on principal component analysis, cluster analysis, and correlation analysis identified contribution of metals from tannery effluents, agrochemicals, automobiles exhaust, and natural weathering processes. Tannery-affected soils were enriched with Cd followed by Cr, Pb, Ni, Cu, Co, Zn, and Mn. Geo-accumulation index (I geo ) classified the soil samples in unpolluted to moderately polluted categories. Metal pollution index provided better estimation of heavy metal pollution as compared to pollution load index. Ecological risk index showed high potential ecological risk associated with Cd and Cr with mean concentrations above respective average shale/ background values. The results are useful for heavy metals source identification, enrichment, risk assessment, and management of tannery-affected soils and can contribute to monitoring programs at regional levels.
The effect of ultrasound pretreatment using Single Frequency Counter Current Ultrasound (SFCCU) on the enzymolysis of tea residue protein (TRP) extracted with sodium hydroxide was investigated. The concentration of TRP hydrolysate, enzymolysis kinetics and thermodynamic parameters after SFCCU pretreatment were determined and compared with traditional enzymolysis. The results indicated that both ultrasound assisted and traditional enzymolysis conformed to first-order kinetics within the limits of the studied parameters. Temperature and sonication had affirmative effect on the enzymolysis of TRP with temperature yielding greater impact. Michaelis constant ( ) in ultrasonic pretreated enzymolysis decreased by 32.7% over the traditional enzymolysis. The highest polypeptide concentration of 24.12 mg ml was obtained with the lowest energy requirement at improved conditions of 50 g L of TRP, alcalase concentration of 2000 U g, time of 10 min and temperature of 50 °C for the ultrasonic treated enzymolysis. The values of reaction rate constant () for TRP enzymolysis increased by 78, 40, 82 and 60% at 20, 30, 40 and 50 °C, respectively. The thermodynamic properties comprising activation energy (), change in enthalpy ) and entropy) were reduced by ultrasound pretreatment whereas Gibbs free energy ) was increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.