Recommender systems are widely used to provide users with recommendations based on their preferences. With the ever-growing volume of information online, recommender systems have been a useful tool to overcome information overload. The utilization of recommender systems cannot be overstated, given its potential influence to ameliorate many over-choice challenges. There are many types of recommendation systems with different methodologies and concepts. Various applications have adopted recommendation systems, including e-commerce, healthcare, transportation, agriculture, and media. This paper provides the current landscape of recommender systems research and identifies directions in the field in various applications. This article provides an overview of the current state of the art in recommendation systems, their types, challenges, limitations, and business adoptions. To assess the quality of a recommendation system, qualitative evaluation metrics are discussed in the paper.
The non-uniform photoelectric response of infrared imaging systems results in fixed-pattern stripe noise being superimposed on infrared images, which severely reduces image quality. As the applications of degraded infrared images are limited, it is crucial to effectively preserve original details. Existing image destriping methods struggle to concurrently remove all stripe noise artifacts, preserve image details and structures, and balance real-time performance. In this paper we propose a novel algorithm for destriping degraded images, which takes advantage of neighbouring column signal correlation to remove independent column stripe noise. This is achieved through an iterative deep unfolding algorithm where the estimated noise of one network iteration is used as input to the next iteration. This progression substantially reduces the search space of possible function approximations, allowing for efficient training on larger datasets. The proposed method allows for a more precise estimation of stripe noise to preserve scene details more accurately. Extensive experimental results demonstrate that the proposed model outperforms existing destriping methods on artificially corrupted images on both quantitative and qualitative assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.