The lymphatic system plays an indispensable role in humoral balance, lipid metabolism, and immune regulation. The lymph nodes (LNs) are known as the primary sites of tumor metastasis and the metastatic LNs largely affected the prognosis of the patiens. A well-designed lymphatic-targeted system favors disease treatment as well as vaccination efficacy. In recent years, development of nanotechnologies and emerging biomaterials have gained increasing attention in developing lymph-node-targeted drug-delivery systems. By mimicking the endogenous macromolecules or lipid conjugates, lymph-node-targeted nanocarries hold potential for disease diagnosis and tumor therapy. This review gives an introduction to the physiological functions of LNs and the roles of LNs in diseases, followed by a review of typical lymph-node-targeted nanomaterial-based drug-delivery systems (e.g., liposomes, micelles, inorganic nanomaterials, hydrogel, and nanocapsules). Future perspectives and conclusions concerned with lymph-node-targeted drug-delivery systems are also provided.
Immunogenic cell death (ICD), a dying state of the cells, encompasses the changes in the conformations of cell surface and the release of damage‐associated molecular patterns, which could initiate an adaptive immune response by stimulating the dendritic cells to present antigens to T cells. Advancements in biomaterials, nanomedicine, and micro‐ and nano‐technologies have facilitated the development of effective ICD inducers, but the potential toxicity of these vesicles encountered in drug delivery via intravenous administration hampers their further application. As alternatives, the local drug delivery systems have gained emerging attention due to their ability to prolong the retention of high payloads at the lesions, sequester drugs from harsh environments, overcome biological barriers to exert optimal efficacy, and minimize potential side effects to guarantee bio‐safety. Herein, a brief overview of the local drug delivery techniques used for ICD inducers is provided, explaining how these techniques broaden, alter, and enhance the therapeutic capability while circumventing systemic toxicity at the same time. The historical context and prominent examples of the local administration of ICD inducers are introduced. The complexities, potential pitfalls, and opportunities for local drug delivery techniques in cancer immunotherapy are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.