Wireless sensor networks (WSNs) have attracted substantial research interest, especially in the context of performing monitoring and surveillance tasks. However, it is challenging to strike compelling trade-offs amongst the various conflicting optimization criteria, such as the network's energy dissipation, packet-loss rate, coverage and lifetime. This paper provides a tutorial and survey of recent research and development efforts addressing this issue by using the technique of multi-objective optimization (MOO). First, we provide an overview of the main optimization objectives used in WSNs. Then, we elaborate on various prevalent approaches conceived for MOO, such as the family of mathematical programming based scalarization methods, the family of heuristics/metaheuristics based optimization algorithms, and a variety of other advanced optimization techniques. Furthermore, we summarize a range of recent studies of MOO in the context of WSNs, which are intended to provide useful guidelines for researchers to understand the referenced literature. Finally, we discuss a range of open problems to be tackled by future research.
In this paper, linear transceiver design for multi-hop amplify-and-forward (AF) multiple-input multiple-out (MIMO) relaying systems with Gaussian distributed channel estimation errors is investigated. Commonly used transceiver design criteria including weighted mean-square-error (MSE) minimization, capacity maximization, worst-MSE/MAX-MSE minimization and weighted sum-rate maximization, are considered and unified into a single matrix-variate optimization problem. A general robust design algorithm is proposed to solve the unified problem. Specifically, by exploiting majorization theory and properties of matrix-variate functions, the optimal structure of the robust transceiver is derived when either the covariance matrix of channel estimation errors seen from the transmitter side or the corresponding covariance matrix seen from the receiver side is proportional to an identity matrix. Based on the optimal structure, the original transceiver design problems are reduced to much simpler problems with only scalar variables whose solutions are readily obtained by iterative water-filling algorithm. A Chengwen Xing and Zesong Fei are with the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.