Emerging Metaverse applications demand reliable, accurate, and photorealistic reproductions of human hands to perform sophisticated operations as if in the physical world. While real human hand represents one of the most intricate coordination between bones, muscle, tendon, and skin, state-of-the-art techniques unanimously focus on modeling only the skeleton of the hand. In this paper, we present NIMBLE, a novel parametric hand model that includes the missing key components, bringing 3D hand model to a new level of realism. We first annotate muscles, bones and skins on the recent Magnetic Resonance Imaging hand (MRI-Hand) dataset [Li et al. 2021] and then register a volumetric template hand onto individual poses and subjects within the dataset. NIMBLE consists of 20 bones as triangular meshes, 7 muscle groups as tetrahedral meshes, and a skin mesh. Via iterative shape registration and parameter learning, it further produces shape blend shapes, pose blend shapes, and a joint regressor. We demonstrate applying NIMBLE to modeling, rendering, and visual inference tasks. By enforcing the inner bones and muscles to match anatomic and kinematic rules, NIMBLE can animate 3D hands to new poses at unprecedented realism. To model the appearance of skin, we further construct a photometric HandStage to acquire high-quality textures and normal maps to model wrinkles and palm print. Finally, NIMBLE also benefits learning-based hand pose and shape estimation by either synthesizing rich data or acting directly as a differentiable layer in the inference network.
Recent years have seen growing interest in 3D human face modeling due to its wide applications in digital human, character generation and animation. Existing approaches overwhelmingly emphasized on modeling the exterior shapes, textures and skin properties of faces, ignoring the inherent correlation between inner skeletal structures and appearance. In this paper, we present SCULPTOR, 3D face creations with Skeleton Consistency Using a Learned Parametric facial generaTOR , aiming to facilitate the easy creation of both anatomically correct and visually convincing face models via a hybrid parametric-physical representation. At the core of SCULPTOR is LUCY, the first large-scale shape-skeleton face dataset in collaboration with plastic surgeons. Named after the fossils of one of the oldest known human ancestors, our LUCY dataset contains high-quality Computed Tomography (CT) scans of the complete human head before and after orthognathic surgeries, which are critical for evaluating surgery results. LUCY consists of 144 scans of 72 subjects (31 male and 41 female), where each subject has two CT scans taken pre- and post-orthognathic operations. Based on our LUCY dataset, we learned a novel skeleton consistent parametric facial generator, SCULPTOR, which can create unique and nuanced facial features that help define a character and at the same time maintain physiological soundness. Our SCULPTOR jointly models the skull, face geometry and face appearance under a unified data-driven framework by separating the depiction of a 3D face into shape blend shape, pose blend shape and facial expression blend shape. SCULPTOR preserves both anatomic correctness and visual realism in facial generation tasks compared with existing methods. Finally, we showcase the robustness and effectiveness of SCULPTOR in various fancy applications unseen before, like archaeological skeletal facial completion, bone-aware character fusion, skull inference from images, face generation with lipo-Level change and facial animations, etc.
Background Quantitative computed tomography (QCT) analysis may serve as a tool for assessing the severity of coronavirus disease 2019 (COVID-19) and for monitoring its progress. The present study aimed to assess the association between steroid therapy and quantitative CT parameters in a longitudinal cohort with COVID-19. Methods Between February 7 and February 17, 2020, 72 patients with severe COVID-19 were retrospectively enrolled. All 300 chest CT scans from these patients were collected and classified into five stages according to the interval between hospital admission and follow-up CT scans: Stage 1 (at admission); Stage 2 (3–7 days); Stage 3 (8–14 days); Stage 4 (15–21 days); and Stage 5 (22–31 days). QCT was performed using a threshold-based quantitative analysis to segment the lung according to different Hounsfield unit (HU) intervals. The primary outcomes were changes in percentage of compromised lung volume (%CL, − 500 to 100 HU) at different stages. Multivariate Generalized Estimating Equations were performed after adjusting for potential confounders. Results Of 72 patients, 31 patients (43.1%) received steroid therapy. Steroid therapy was associated with a decrease in %CL (− 3.27% [95% CI, − 5.86 to − 0.68, P = 0.01]) after adjusting for duration and baseline %CL. Associations between steroid therapy and changes in %CL varied between different stages or baseline %CL (all interactions, P < 0.01). Steroid therapy was associated with decrease in %CL after stage 3 (all P < 0.05), but not at stage 2. Similarly, steroid therapy was associated with a more significant decrease in %CL in the high CL group (P < 0.05), but not in the low CL group. Conclusions Steroid administration was independently associated with a decrease in %CL, with interaction by duration or disease severity in a longitudinal cohort. The quantitative CT parameters, particularly compromised lung volume, may provide a useful tool to monitor COVID-19 progression during the treatment process. Trial registration Clinicaltrials.gov, NCT04953247. Registered July 7, 2021, https://clinicaltrials.gov/ct2/show/NCT04953247
BackgroundQuantitative computed tomography (QCT) analysis may serve as a tool for assessing the severity of coronavirus disease 2019 (COVID-19) and for monitoring its progress. The present study aimed to assess the association between steroid therapy and quantitative CT parameters in a longitudinal cohort with COVID-19.MethodsBetween February 7 and February 17, 2020, 300 chest CT scans from 72 patients with severe COVID-19 were retrospectively collected and classified into five stages according to the interval between hospital admission and follow-up CT scans: Stage 1 (at admission); Stage 2 (3–7 days); Stage 3 (8–14 days); Stage 4 (15–21 days); and Stage 5 (22–31 days). QCT was performed using a threshold-based quantitative analysis to segment the lung according to different Hounsfield unit (HU) intervals. The primary outcomes were changes in percentage of compromised lung volume (%CL, –500 to 100 HU) at different stages. Multivariate Generalized Estimating Equations were performed after adjusting for potential confounders.ResultsOf 72 patients, 31 patients (43.1%) received steroid therapy. Steroid therapy was associated with a decrease in %CL (-3.27% [95% CI, -5.86 to -0.68, P = 0.01]) after adjusting for duration and baseline %CL. Associations between steroid therapy and changes in %CL varied between different stages or baseline %CL (all interactions, P < 0.01). Steroid therapy was associated with decrease in %CL after stage 3 (all P < 0.05), but not at stage 2. Similarly, steroid therapy was associated with a more significant decrease in %CL in the high CL group (P < 0.05), but not in the low CL group.ConclusionsSteroid administration was independently associated with a decrease in %CL, with interaction by duration or disease severity in a longitudinal cohort. The quantitative CT parameters, particularly compromised lung volume, may provide a useful tool to monitor COVID-19 progression during the treatment process. Trial registration: Clinicaltrials.gov, NCT04953247. Registered July 7, 2021, https://clinicaltrials.gov/ct2/show/NCT04953247
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.