Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype and is characterized by poor survival. Radiotherapy plays an important role in treating TNBC. The purpose of this study was to determine whether inhibiting the AMP-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase (PI3K) pathways alone or in combination potentiates radiotherapy in TNBC. AMPKα1 and AMPKα2 knockdown diminished cyclin D1 expression and induced G1 cell cycle arrest but did not induce apoptosis alone or in combination with radiotherapy. Next, we analyzed the role of PI3K p85α, p85β, p110α, p110β, Akt1, and Akt2 proteins on TNBC cell cycle progression and apoptosis induction. Akt1 and p110α knockdown diminished cyclin D1 expression and induced apoptosis. Silencing Akt1 promoted synergistic apoptosis induction during radiotherapy and further reduced survival after radiation. Treatment with the Akt inhibitor, MK-2206 48 h after radiotherapy decreased Akt1 levels and potentiated radiation-induced apoptosis. Together, our results demonstrate that AMPKα, p110α, and Akt1 promote TNBC proliferation and that Akt1 is a key regulator of radiosensitivity in TNBC. Importantly, combining radiotherapy with the pharmacological inhibition of Akt1 expression is a potentially promising approach for the treatment of TNBC.
Introduction Benzodiazepines are prescribed inappropriately in up to 40% of outpatients. The purpose of this study is to describe a collaborative team-based care model in which clinical pharmacists work with primary care providers (PCPs) to improve the safe use of benzodiazepines for anxiety and sleep disorders and to assess the preliminary results of the impact of the clinical service on patient outcomes. Methods Adult patients were eligible if they received care from the academic primary care clinic, were prescribed a benzodiazepine chronically, and were not pregnant or managed by psychiatry. Outcomes included baseline PCP confidence and knowledge of appropriate benzodiazepine use, patient symptom severity, and medication changes. Results Twenty-five of 57 PCPs responded to the survey. PCPs reported greater confidence in diagnosing and treating generalized anxiety and panic disorders than sleep disorder and had variable knowledge of appropriate benzodiazepine prescribing. Twenty-nine patients had at least 1 visit. Over 44 total patient visits, 59% resulted in the addition or optimization of a nonbenzodiazepine medication and 46% resulted in the discontinuation or optimization of a benzodiazepine. Generalized anxiety symptom severity scores significantly improved (–2.0; 95% confidence interval (CI): –3.57 to –0.43). Conclusion Collaborative team-based models that include clinical pharmacists in primary care can assist in optimizing high-risk benzodiazepine use. Although these findings suggest improvements in safe medication use and symptoms, additional studies are needed to confirm these preliminary results.
Guidelines recommend patient follow-up within 2 weeks of antidepressant initiation or uptitration to minimize treatment discontinuation and suicidal ideation risks; however, time constraints and lack of systematic processes remain barriers in primary care. A pharmacist-led multidisciplinary telemonitoring service aimed to address these barriers. This was a retrospective, observational study of adults with depression initiated or uptitrated on an antidepressant between May and October 2016. Outcomes included the proportion of eligible patients successfully contacted, adherence, adverse effects, suicidal ideations, and pharmacist interventions. Clinical pharmacists successfully reached 258 of 380 (68%) patients and provided follow-up in 298 calls. Patients endorsed antidepressant nonadherence during 56 (19%) calls, adverse effects in 81 (27%) calls, and suicidal ideations in 13 (4%) calls. Pharmacists provided 109 total interventions for 102 patients. The clinical pharmacist-led multidisciplinary antidepressant telemonitoring service is an alternative resource to monitor patients after antidepressant initiation or titration in primary care settings.
Triple negative breast cancer (TNBC) is an aggressive disease with a 5-y relative survival rate of 11% after distant metastasis. To survive the metastatic cascade, tumor cells remodel their signaling pathways by regulating energy production and upregulating survival pathways. AMP-activated protein kinase (AMPK) and Akt regulate energy homeostasis and survival, however, the individual or synergistic role of AMPK and Akt isoforms during lung colonization by TNBC cells is unknown. The purpose of this study was to establish whether targeting Akt, AMPKα or both Akt and AMPKα isoforms in circulating cancer cells can suppress TNBC lung colonization. Transient silencing of Akt1 or Akt2 dramatically decreased metastatic colonization of lungs by inducing apoptosis or inhibiting invasion, respectively. Importantly, transient pharmacologic inhibition of Akt activity with MK-2206 or AZD5363 inhibitors did not prevent colonization of lung tissue by TNBC cells. Knockdown of AMPKα1, AMPKα2, or AMPKα1/2 also had no effect on metastatic colonization of lungs. Taken together, these findings demonstrate that transient decrease in AMPK isoforms expression alone or in combination with Akt1 in circulating tumor cells does not synergistically reduce TNBC metastatic lung colonization. Our results also provide evidence that Akt1 and Akt2 expression serve as a bottleneck that can challenge colonization of lungs by TNBC cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.