Gastric cancer remains the third leading cause of cancer-related mortality worldwide. Emerging evidence has shown that circular RNAs (circRNAs) play a critical regulatory role in the occurrence and development of various cancers through sponging miRNAs or acting as RNA-binding protein (RBP) sponges. We found that circUBE2Q2 was significantly upregulated in GC tissues and cell lines. Knockdown of circUBE2Q2 inhibited proliferation, migration, invasion, and glycolysis, and increased autophagy in vitro. In addition, knockdown of circUBE2Q2 inhibited GC tumorigenicity and metastasis potential in vivo. A series of experiments were performed to confirm that circUBE2Q2 regulates GC progression via the circUBE2Q2-miR-370-3p-STAT3 axis and promotes tumor metastasis through exosomal communication. Further in vivo experiments confirmed that, combination treatment of circUBE2Q2 knocking down and STAT3 inhibitor has synergistic effects on the gastric cancer growth inhibition, which provides a possibility to enhance the sensitivity of targeted drugs to gastric cancer through targeting circUBE2Q2. Our findings revealed that circUBE2Q2 may serve as a new proliferation-promoting factor and prognostic marker in gastric cancer.
Circular RNAs (circRNAs) play vital regulatory roles in the progression of multiple cancers. In our study, transcriptome analysis and self-organizing maps (SOM) were applied to screen backbone circRNAs in gastric cancer (GC). Upon validation of the expression patterns of screened circRNAs, gain- and loss-of-function assays were performed in vitro and in vivo. Underlying mechanisms were investigated using RNA pull-down, luciferase reporter assay and RNA immunoprecipitation. The expression of circTHBS1 was significantly increased in GC and associated with poor prognosis. CircTHBS1 facilitated the malignant behavior and epithelial-to-mesenchymal transition of GC cells. Mechanistically, circTHBS1 sponged miR-204-5p to promote the expression of Inhibin Subunit Beta A (INHBA). Moreover, circTHBS1 could enhance the HuR-mediated mRNA stability of INHBA, which subsequently activated the TGF-β pathway. Our research identified circTHBS1 as an oncogenic circRNA that enhances GC malignancy by elevating INHBA expression, providing new insight and a feasible target for the diagnosis and treatment of GC.
Gastric cancer (GC) ranks third in mortality among all cancers worldwide. Circular RNAs (circRNAs) play an important role in the occurrence and development of gastric cancer. Forkhead box P2 (FOXP2), as a transcription factor, is closely associated with the development of many types of tumours. However, the regulatory network between FOXP2 and circRNAs remains to be explored. In our study, circST3GAL6 was significantly downregulated in GC and was associated with poor prognosis in GC patients. Overexpression of circST3GAL6 inhibited the malignant behaviours of GC cells, which was mediated by inducing apoptosis and autophagy. In addition, we demonstrated that circST3GAL6 regulated FOXP2 through the mir‐300 sponge. We further found that FOXP2 inhibited MET Proto‐Oncogene (MET), which was the initiating factor that regulated the classic AKT/mTOR pathway of autophagy. In conclusion, our results suggested that circST3GAL6 played a tumour suppressive role in gastric cancer through miR‐300/FOXP2 axis and regulated apoptosis and autophagy through FOXP2‐mediated transcriptional inhibition of the MET axis, which may become a potential target for GC therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.