We report on the achievement of wafer-level photocatalytic overall water splitting on GaN nanowires grown by molecular beam epitaxy with the incorporation of Rh/Cr(2)O(3) core-shell nanostructures acting as cocatalysts, through which H(2) evolution is promoted by the noble metal core (Rh) while the water forming back reaction over Rh is effectively prevented by the Cr(2)O(3) shell O(2) diffusion barrier. The decomposition of pure water into H(2) and O(2) by GaN nanowires is confirmed to be a highly stable photocatalytic process, with the turnover number per unit time well exceeding the value of any previously reported GaN powder samples.
Full-color, catalyst-free InGaN/GaN dot-in-a-wire light-emitting diodes (LEDs) were monolithically grown on Si(111) by molecular beam epitaxy, with the emission characteristics controlled by the dot properties in a single epitaxial growth step. With the use of p-type modulation doping in the dot-in-a-wire heterostructures, we have demonstrated the most efficient phosphor-free white LEDs ever reported, which exhibit an internal quantum efficiency of ∼56.8%, nearly unaltered CIE chromaticity coordinates with increasing injection current, and virtually zero efficiency droop at current densities up to ∼640 A/cm(2). The remarkable performance is attributed to the superior three-dimensional carrier confinement provided by the electronically coupled dot-in-a-wire heterostructures, the nearly defect- and strain-free GaN nanowires, and the significantly enhanced hole transport due to the p-type modulation doping.
The discovery of direct bandgap semiconducting two-dimensional (2D) transition metal dichalcogenides (TMDCs) has opened a new era in flexible optoelectronic devices. Critical to this development is the realization of a semiconductor laser using the emerging 2D TMDCs. Here, by embedding 2D MoS2 at the interface between a free-standing microdisk and microsphere, we have demonstrated, for the first time, room-temperature lasing from 2D TMDCs. The devices exhibit multiple lasing peaks in the wavelength range of ∼600 to 800 nm. The threshold is measured to be ∼5 μW under continuous wave operation at room temperature. No saturation in the output power is measured for pump powers more than 2 orders of magnitude larger than the threshold. The superior performance is attributed to the large gain of 2D TMDCs and the strong coupling between the 2D MoS2 gain medium and optical modes in the unique optical cavity.
Solar water splitting for hydrogen generation can be a potential source of renewable energy for the future. Here we show that efficient and stable stoichiometric dissociation of water into hydrogen and oxygen can be achieved under visible light by eradicating the potential barrier on nonpolar surfaces of indium gallium nitride nanowires through controlled p-type dopant incorporation. An apparent quantum efficiency of B12.3% is achieved for overall neutral (pHB7.0) water splitting under visible light illumination (400-475 nm). Moreover, using a double-band p-type gallium nitride/indium gallium nitride nanowire heterostructure, we show a solar-to-hydrogen conversion efficiency of B1.8% under concentrated sunlight. The dominant effect of near-surface band structure in transforming the photocatalytic performance is elucidated. The stability and efficiency of this recyclable, wafer-level nanoscale metal-nitride photocatalyst in neutral water demonstrates their potential use for large-scale solar-fuel conversion.
Solar water splitting is one of the key steps in artificial photosynthesis for future carbonneutral, storable and sustainable source of energy. Here we show that one of the major obstacles for achieving efficient and stable overall water splitting over the emerging nanostructured photocatalyst is directly related to the uncontrolled surface charge properties. By tuning the Fermi level on the nonpolar surfaces of gallium nitride nanowire arrays, we demonstrate that the quantum efficiency can be enhanced by more than two orders of magnitude. The internal quantum efficiency and activity on p-type gallium nitride nanowires can reach B51% and B4.0 mol hydrogen h À 1 g À 1 , respectively. The nanowires remain virtually unchanged after over 50,000 mmol gas (hydrogen and oxygen) is produced, which is more than 10,000 times the amount of photocatalyst itself (B4.6 mmol). The essential role of Fermi-level tuning in balancing redox reactions and in enhancing the efficiency and stability is also elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.