The discovery of direct bandgap semiconducting two-dimensional (2D) transition metal dichalcogenides (TMDCs) has opened a new era in flexible optoelectronic devices. Critical to this development is the realization of a semiconductor laser using the emerging 2D TMDCs. Here, by embedding 2D MoS2 at the interface between a free-standing microdisk and microsphere, we have demonstrated, for the first time, room-temperature lasing from 2D TMDCs. The devices exhibit multiple lasing peaks in the wavelength range of ∼600 to 800 nm. The threshold is measured to be ∼5 μW under continuous wave operation at room temperature. No saturation in the output power is measured for pump powers more than 2 orders of magnitude larger than the threshold. The superior performance is attributed to the large gain of 2D TMDCs and the strong coupling between the 2D MoS2 gain medium and optical modes in the unique optical cavity.
Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210 nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6 V, which is significantly lower than the commonly observed 20 – 40 V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated.
Multicolor single InGaN/GaN dot-in-nanowire light emitting diodes (LEDs) were fabricated on the same substrate using selective area epitaxy. It is observed that the structural and optical properties of InGaN/GaN quantum dots depend critically on nanowire diameters. Photoluminescence emission of single InGaN/GaN dot-in-nanowire structures exhibits a consistent blueshift with increasing nanowire diameter. This is explained by the significantly enhanced indium (In) incorporation for nanowires with small diameters, due to the more dominant contribution for In incorporation from the lateral diffusion of In adatoms. Single InGaN/GaN nanowire LEDs with emission wavelengths across nearly the entire visible spectral were demonstrated on a single chip by varying the nanowire diameters. Such nanowire LEDs also exhibit superior electrical performance, with a turn-on voltage ∼2 V and negligible leakage current under reverse bias. The monolithic integration of full-color LEDs on a single chip, coupled with the capacity to tune light emission characteristics at the single nanowire level, provides an unprecedented approach to realize ultrasmall and efficient projection display, smart lighting, and on-chip spectrometer.
We have investigated for the first time the impact of electron overflow on the performance of nanowire light-emitting diodes (LEDs) operating in the entire visible spectral range, wherein intrinsic white light emission is achieved from self-organized InGaN quantum dots embedded in defect-free GaN nanowires on a single chip. Through detailed temperature-dependent electroluminescence and simulation studies, it is revealed that electron leakage out of the device active region is primarily responsible for efficiency degradation in such nanowire devices, which in conjunction with the presence of nonradiative surface recombination largely determines the unique emission characteristics of nanowire light-emitting diodes. We have further demonstrated that electron overflow in nanowire LEDs can be effectively prevented with the incorporation of a p-doped AlGaN electron blocking layer, leading to the achievement of phosphor-free white light-emitting diodes that can exhibit for the first time virtually zero efficiency droop for injection currents up to ~2200 A/cm(2). This study also provides unambiguous evidence that Auger recombination is not the primary mechanism responsible for efficiency droop in GaN-based nanowire light-emitting diodes.
The performance of conventional AlGaN deep ultraviolet light emitting diodes has been limited by the extremely low light extraction efficiency (<10%), due to the unique transverse magnetic (TM) polarized light emission. Here, we show that, by exploiting the lateral side emission, the extraction efficiency of TM polarized light can be significantly enhanced in AlGaN nanowire structures. Using the three-dimensional finite-difference time domain simulation, we demonstrate that the nanowire structures can be designed to inhibit the emission of guided modes and redirect trapped light into radiated modes. A light extraction efficiency of more than 70% can, in principle, be achieved by carefully optimizing the nanowire size, nanowire spacing, and p-GaN thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.