In the wake of the restrictions imposed on social interactions due to the COVID-19 pandemic, traditional classroom education was replaced by distance education in many universities. Under the changed circumstances, students are required to learn more independently. The challenge for teachers has been to duly ascertain students’ learning efficiency and engagement during online lectures. This paper proposes an optimized lightweight convolutional neural network (CNN) model for engagement recognition within a distance-learning setup through facial expressions. The ShuffleNet v2 architecture was selected, as this model can easily adapt to mobile platforms and deliver outstanding performance compared to other lightweight models. The proposed model was trained, tested, evaluated and compared with other CNN models. The results of our experiment showed that an optimized model based on the ShuffleNet v2 architecture with a change of activation function and the introduction of an attention mechanism provides the best performance concerning engagement recognition. Further, our proposed model outperforms many existing works in engagement recognition on the same database. Finally, this model is suitable for student engagement recognition for distance learning on mobile platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.