Multiphoton microscopy is a formidable tool for the pathological analysis of tumors. The physical limitations of imaging systems and the low efficiencies inherent in nonlinear processes have prevented the simultaneous achievement of high imaging speed and high resolution. We demonstrate a self-alignment dual-attention-guided residual-in-residual generative adversarial network trained with various multiphoton images. The network enhances image contrast and spatial resolution, suppresses noise, and scanning fringe artifacts, and eliminates the mutual exclusion between field of view, image quality, and imaging speed. The network may be integrated into commercial microscopes for large-scale, high-resolution, and low photobleaching studies of tumor environments.
Characterization of the microenvironment features of tumors, such as its microstructures, biomolecular metabolism, and functional dynamics, may provide essential pathologic information about the tumor, tumor margin, and adjacent normal tissue for early and intraoperative diagnosis. However, it can be particularly challenging to obtain faithful and comprehensive pathological information simultaneously from unperturbed tissues due to the complexity of the microenvironment in organisms. Super-multiplex nonlinear optical imaging system emerged and matured as an attractive tool for acquisition and elucidation of the nonlinear properties correlated with tumor microenvironment. Here, we introduced a nonlinear effects-based multidimensional optical imaging platform and methodology to simultaneously and efficiently capture contrasting and complementary nonlinear optical signatures of freshly excised human skin tissues. The qualitative and quantitative analysis of autofluorescence (FAD), collagen fiber, and intracellular components (lipids and proteins) illustrated the differences about morphological changes and biomolecular metabolic processes of the epidermis and dermis in different skin carcinogenic types. Interpretation of multi-parameter stain-free histological findings complements conventional H&E-stained slides for investigating basal cell carcinoma and pigmented nevus, validates the platform’s versatility and efficiency for classifying subtypes of skin carcinoma, and provides the potential to translate endogenous molecule into biomarker for assisting in rapid cancer screening and diagnosis.
Immunotherapy and its evaluation have shown great promise for cancer treatment. Here, a mouse subcutaneous transplantable tumor model was applied to testing therapeutic strategies. The mouse model was treated by regulating anti-PD-L1, anti-CTLA-4, cisplatin and their combined therapy. Biochemistry experiments have found that after immunotherapy, mice have more immune responses, which were manifested by an increase in the content of growth factors and the activation of T cells. Meanwhile, multimodal nonlinear optical microscopy imaging combined with algorithms was used to evaluate the treatment's effectiveness. By detecting the metabolism rate and microstructure in tissue, it was proved that combined therapies including immune checkpoint inhibitors do have a better effect on ovarian tumors. Our discovery of valid treatments for mice with ovarian tumor and provides an evaluation tool via nonlinear optics combined with algorithms offers new insights into therapeutic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.