Orf virus-encoded protein 002 (ORFV002) inhibits NF-κB signaling pathway by decreasing the acetylation of NF-κB-p65 through interference of NF-κB p65′s association with NF-κB p300. However, the precise mechanism of how ORFV002 interferes with the NF-κB p65/p300 association is still unknown. Due to similarities of the amino acid sequences of ORFV002 and the adenovirus type 12 (Ad12) E1A protein (E1A-12), we hypothesized that the N-terminal 52 amino acids of ORFV002 might play an important role in this inhibition and constructed several in-frame fusions of ORFV002 to an enhanced green fluorescent protein (EGFP) reporter, including C-terminal and N-terminal deletion mutants of ORFV002. When the N-terminus of ORFV002 was absent, the localization of ORFV002 shifted mainly from the nucleus to the cytoplasm, and it's inhibition of NF-κB transactivation was lost. NF-κB p65 Lys310 acetylation and Ser276 phosphorylation were detected in co-transfection experiments with NF-κB p65 and ORFV002 or its mutants with, or without, the N-terminal region. The results showed that the N-terminus of ORFV002 plays a crucial role in inhibiting both the acetylation and phosphorylation of NF-κB p65. Further investigation indicated that ORFV002 and its C-terminal deletion mutants interfered with NF-κB p65 (Ser276) phosphorylation induced by mitogen- and stress-activated protein kinase-1 (MSK1) and the interaction between NF-κB p65 and MSK1. Since phosphorylated NF-κB p65 recruits transcriptional co-activators such as p300 and CBP, we concluded that the N-terminus of ORFV002 inhibits acetylation of NF-κB p65 by blocking phosphorylation of NF-κB p65 at Ser276.
Orf virus (ORFV), a member of Parapoxvirus, has evolved various strategies to modulate the immune responses of host cells. The ORFV-encoded protein ORFV002, a regulator factor, has been found to inhibit the acetylation of NF-κB-p65 by blocking phosphorylation of NF-κB-p65 at Ser276 and also to disrupt the binding of NF-κB-p65 and p300. To explore the mechanism by which ORFV002 regulates NF-κB signaling, the understanding of ORFV002 potential binding partners in host cells is critical. In this study, ovine S100 calcium binding protein A4 (S100A4), prolyl endopeptidase-like (PREPL) and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 8 (NDUFA8) were found to interact with ORFV002 based on the yeast two-hybrid (Y2H) assay using a cDNA library derived from primary ovine fetal turbinate cells (OFTu). GST pull-down and bidirectional co-immunoprecipitation assay results demonstrate that ORFV002 interacts with S100A4 directly. Following the pEGFP-ORFV002 (p002GFP) transfection, we found that cytoplasmic S100A4 translocates into the nucleus and co-localizes with ORFV002. Furthermore, the inhibitory effect of ORFV002 on NF-κB signaling was significantly restored by S100A4 knock-down phenotype, suggesting that ovine S100A4 participates in the ORFV002-mediated NF-κB signaling. These data demonstrate that ORFV002 inhibits the NF-κB activation through its interaction with S100A4 along with its nucleus translocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.