Raw data simulation is the front-end work of synthetic aperture radar (SAR), which is of great significance. For high-squint spotlight SAR, the frequency domain simulation algorithm is invalid because of the range-azimuth coupling effect. In order to realize high-squint spotlight SAR raw data simulation in the frequency domain, an algorithm based on coordinate transformation and non-uniform fast Fourier transform (NUFFT) is proposed. This algorithm generates broadside raw data using a two-dimensional (2-D) frequency simulation algorithm; then, coordinate transformation is used by analyzing the characteristics of broadside and high-squint spotlight SAR. After coordinate transformation, NUFFT is carried out to realize the coupling relation in the 2-D frequency domain. Since the coordinate transformation ignores the influence of range walk, the range walk is compensated after NUFFT. As a result, compared with the traditional squint spotlight SAR frequency domain simulation algorithm, the proposed algorithm can improve the accuracy of point and distributed target imaging results, and the efficiency of the proposed algorithm can be significantly improved in contrast the traditional time domain algorithm.
Synthetic aperture radar (SAR), as an active microwave sensor, can inevitably receive radio frequency interference (RFI) generated by various electromagnetic equipment. When the SAR system receives RFI, it will affect SAR imaging and limit the application of SAR images. As a kind of RFI mitigation method, notch filtering method is a classical method with high efficiency and robust performance. However, the notch filtering methods pay no attention to the protection of useful signals. This paper proposed a modified 2-D notch filter based on image segmentation for RFI mitigation with signal-protected capability. (1) The adaptive gamma correction (AGC) approach was utilized to enhance the SAR image with RFI in the range-frequency and azimuth-time domain. (2) The modified selective binary and Gaussian filtering regularized level set (SBGFRLS) model was utilized to further process the image after AGC to accurately extract the contour of the useful signals with interference, which is more conducive to protecting the useful signals without interference. (3) The Generalized Singular Value Thresholding (GSVT) based low-rank sparse decomposition (LRSD) model was utilized to separate the RFI signals and the useful signals. Then, the useful signals were restored to the raw data. The simulation experiments and measured data experiments show that the proposed method can effectively mitigate RFI and protect the useful signals whether there are RFI with single source or multiple sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.