Since support vector machines (SVM) exhibit a good generalization performance in the small sample cases, these have a wide application in machinery fault diagnosis. However, a problem arises from setting optimal parameters for SVM so as to obtain optimal diagnosis result. This article presents a fault diagnosis method based on SVM with parameter optimization by ant colony algorithm to attain a desirable fault diagnosis result, which is performed on the locomotive roller bearings to validate its feasibility and efficiency. The experiment finds that the proposed algorithm of ant colony optimization with SVM (ACO—SVM) can help one to obtain a good fault diagnosis result, which confirms the advantage of the proposed ACO—SVM approach.
Fault feature extraction and remaining useful life (RUL) prediction are important to condition based maintenance (CBM). In order to realize the fault feature extraction of gearbox vibration signal presenting nonlinear and non-Gaussian, the integration of empirical mode decomposition (EMD) and Wigner-Ville distribution (WVD) are proposed in this paper. Taking the kurtosis as standard, the WVD is applied to some IMFs with larger kurtosis to calculate the time-frequency distribution, with an effective suppress on mode mixing and the cross-term interference. Afterwards, particle filter (PF) with the state space model based on Wiener process is proposed to predict the RUL of gearbox considering degradation feature, gearbox teeth wear and nonlinear and non-Gaussian system. The gearbox life cycle test shows that the EMD-WVD method can extract the valued characteristics of vibration signal accurately, and the particle filter can provide an effective way to predict the RUL of gearbox.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.