A new type of 3D electrode detector, named here as the Implanted-Epi Silicon 3D-Spherical Electrode Detector, is proposed in this work. Epitaxial and ion implantation processes can be used in this new detector, allowing bowl-shaped electrodes to penetrate the silicon completely. The distance between the bowl cathode and the central collection electrode is basically the same, thus the total depletion voltage of Implanted-Epi Silicon 3D-Spherical Electrode Detectors is no longer directively correlated with the thickness of the silicon wafer, but only related to the electrode spacing. In this work, we model the device physics of this new structure and use a simulation program to conduct a systematic 3D simulation of its electrical characteristics, including electric potential and electric field distributions, electron concentration profile, leakage current, and capacitance, and compare it to the traditional 3D detectors. The theoretical and simulation study found that the internal electric potential of the new detector was smooth and no potential saddle point was found. The electric field is also uniform, and there is no zero field and a low electric field area. Compared with the traditional silicon 3D electrode detectors, the full depletion voltage is greatly reduced and the charge collection efficiency is improved. As a large electrode spacing (up to 500 μm) can be realized in the Implanted-Epi Silicon 3D-Spherical Electrode Detector thanks to their advantage of a greatly reduced full depletion voltage, detectors with large pixel cells (and thus small dead volume) can be developed for applications in photon science (X-ray, among others).
Among the 3D electrode Si detectors for high energy particle and X-ray detection, the traditional 3D-Trench electrode Si detector is a semiconductor detector that is widely used and discussed. Aiming at removing the shortcomings of the traditional 3D-Trench electrode Si detectors such as uneven electric field distribution, asymmetric electric potential, and the existence of some dead zone, we propose a new type 3D-Spherical Electrode Detectors and carry out extensive and systematic studies of their physical properties. We simulated detector electric field, electric potential, electron concentration distribution, full depletion voltage, leakage current, capacitance, the incident particle induced transient current and the weighting field. We systematically studied and analyzed detector’s electrical characteristics. By comparing with the traditional 3D-Trench electrode Si detectors, the new detector structure has more uniform electric field and potential, and less depletion voltage, leakage current and capacitance.
With the deepening and expansion of semiconductor technology and research, in order to continuously optimize the structure and performance of semiconductor detectors, a high-precision hexagonal spiral silicon drift detector (SDD) is proposed in this paper. In order to obtain a more accurate spiral ring structure, this paper goes beyond the first-order formula in the Taylor expansion for calculating the radius of the spiral ring. Based on the first-order formula, the second-order formula for calculating the radius of the spiral ring is further developed and derived. The point coordinates are obtained by combining the radius, angle, and ring spacing change formula to obtain a more accurate spiral ring structure. The actual number of turns is more accurate than that obtained from first-order approximation, which better solves the problem of accurate calculation of the number of spiral rings and the structure of the spiral SDD in the existing technology, that is, the accurate calculation of the radius of the spiral ring. In order to verify the abovementioned theory, we model this new structure and use Technology Computer-Aided Design to system simulate and study its electrical properties, including potential distribution, electric field distribution, and electron concentration distribution. According to the simulation results, compared with the first-order formula, the second-order formula has better electrical properties; more uniform distribution of potential, electric field, and electron concentration; and a clearer electron drift channel.
Since the advent of semiconductor detectors, they have been developed for several generations, and their performance has been continuously improved. In this paper, we propose a new silicon drift detector structure that is different from the traditional spiral SDD structure that has a gap between the cathode ring and the width of cathode ring, increasing gradually with the increase of the radius of the cathode ring. Our new structure of spiral SDD structure has equal cathode ring gap and a given surface electric field, which has many advantages compared with the traditional structure. The novel SDD structure controllably reduces the area of silicon oxide between the spiral rings, which in turn reduces the surface leakage current due to the reduction of total oxide charge in the silicon oxide and electronic states on the silicon/silicon oxide interface. Moreover, it has better controllability to adjust this spiral ring cathode gap to achieve better surface electric field distribution, thus realizing the optimal carrier drift electric field and achieving the optimal detector performance. In order to verify this theory, we have modeled this new structure and simulated its electrical properties using the Sentaurus TCAD tool. We have also analyzed and compared different spiral ring cathode gap structures (from 10 µm to 25 µm for the gap). According to the simulation results of potential, electric field, and electron concentration, we have obtained that a spiral ring cathode gap of 10 µm has the best electrical characteristics, more uniform distribution of potential and surface electric field, and a more smooth and straight electron drift channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.