This paper proposes a novel framework to alleviate the model drift problem in visual tracking, which is based on paced updates and trajectory selection. Given a base tracker, an ensemble of trackers is generated, in which each tracker's update behavior will be paced and then traces the target object forward and backward to generate a pair of trajectories in an interval. Then, we implicitly perform selfexamination based on trajectory pair of each tracker and select the most robust tracker. The proposed framework can effectively leverage temporal context of sequential frames and avoid to learn corrupted information. Extensive experiments on the standard benchmark suggest that the proposed framework achieves superior performance against state-ofthe-art trackers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.