Quantitative knowledge of the water and energy exchanges in agroecosystems is vital for irrigation management and modeling crop production. In this study, the seasonal and annual variabilities of evapotranspiration (ET) and energy exchanges were investigated under two different crop environments – flooded and aerobic soil conditions – using three years (June 2014 to May 2017) of eddy covariance observations over a rice–wheat rotation in eastern China. Across the whole rice-wheat rotation, the average daily ET rate in the rice paddies and wheat fields was 3.6 mm d–1 and 2.4 mm d–1, respectively. The average seasonal ET was 473 and 387 mm for rice and wheat fields, indicating a higher water consumption for rice than for wheat. Averaging for the three cropping seasons, rice paddies had 52% more latent heat flux than wheat fields, whereas wheat had 73% more sensible heat flux than rice paddies. This resulted in a lower Bowen ratio in the rice paddies (0.14) than in the wheat fields (0.4). As eddy covariance observations of turbulent heat fluxes are typically less than the available energy (Rn − G, i.e., net radiation minus soil heat flux), energy balance closure (EBC) therefore does not occur. For rice, EBC was greatest at the vegetative growth stages (mean: 0.90) after considering the water heat storage, whereas wheat had its best EBC at the ripening stages (mean: 0.86).
Previous studies have reported air pollution-radiation interactions in the urban boundary layer (UBL), but vertical gradient variations in the radiation budget and heat flux under air pollution conditions are relatively sparse. In this study, based on gradient observations from the Beijing 325 m meteorological tower in December 2015, the characteristics of near-surface radiation balance and energy budget at three levels under different pollution conditions were comparatively investigated. Relative to clean days, both downward and upward shortwave radiation (DSR and USR) dropped during daytime, while downward and upward longwave radiation (DLR and ULR) enhanced during nighttime on heavily polluted days, showing that with evaluated height, the drop magnitudes of DSR and USR decreased, while the enhancement magnitude of DLR (ULR) decreased (increased). The combined effects of four radiation components significantly induced the reduction in net radiation (R n ) on polluted days, leading to the near-surface energy budget change. In addition, the monthly averaged anthropogenic heat flux (Q f ) was estimated to quantitatively calculate the heat storage (G) term in the surface energy budget. During daytime, compared to the clean episodes, the sensible heat flux (H) was reduced more than R n in the whole near-surface UBL during heavy polluted episodes, resulting in smaller H/(R n + Q f ) and larger G/(R n + Q f ). Finally, we revealed that weak thermal forcing effects caused by insufficient availability of net radiation energy at the surface and weak dynamic motion associated with weak winds were both responsible for the larger reduction (increase) in H (G) during pollution episodes in the whole near-surface UBL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.