Nanoscale zero-valent iron (NZVI) as an effective material has been applied to reduce nitrate. Yet NZVI has defects of aggregation and oxidation. To overcome these disadvantages, nanoscale bimetallic iron/copper particles were introduced to reduce nitrate in this work. In this paper, nanoscale bimetallic Fe/Cu particles were prepared by the liquid phase chemical reduction method; the particles were characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The effect of prepared particles was evaluated by reducing synthetic nitrate wastewater, and batch experiments were conducted to investigate the effect of initial nitrate concentration and various Cu loading on nitrate reduction by nanoscale bimetallic Fe/Cu particles. The results indicated that nitrate could be completely removed in 20 min reaction by nanoscale bimetallic Fe/Cu particles when Cu loading was 5% and initial nitrate concentration was 80 mg/L. As a result, the nitrate in wastewater was converted into ammonium and nitrogen gas, with nitrite as an intermediate by-product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.